scholarly journals Identifying thyroid stem/progenitor cells: advances and limitations

2011 ◽  
Vol 213 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Alessandra Fierabracci

Continuing advances in stem cell science have prompted researchers to envisage the potential application of stem cells for the management of several debilitating disorders, thus raising the expectations of transplant clinicians. In particular, in order to find a source of adult stem cells alternative to embryonic stem cells (ESCs) for the exploration of novel strategies in regenerative medicine, researchers have attempted to identify and characterise adult stem/progenitor cells resident in compact organs, since these populations appear to be responsible for physiological tissue renewal and regeneration after injury. In particular, recent studies have also reported evidence for the existence of adult stem/progenitor cell populations in both mouse and human thyroids. Here, I provide a review of published findings about ESC lines capable of generating thyroid follicular cells, thyroid somatic stem cells and cancer stem cells within the thyroid. The three subjects are analysed by also considering the criticism recently raised against their existence and potential utility. I comment specifically on the significance of resident thyroid stem cells in the developmental biology of the gland and their putative role in the pathogenesis of thyroid disorders and on the protocols employed for their identification. I finally provide my opinion on whether from basic science results obtained to date it is possible to extrapolate any convincing basic for future treatment of thyroid disorders.

2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2359-2359
Author(s):  
Gregory K. Behbehani ◽  
Wendy J. Fantl ◽  
Bruno C Medeiros ◽  
Garry P. Nolan

Abstract Introduction: Leukemic stem cells (LSCs) are recognized as important mediators of chemotherapy resistance and leukemia relapse. The postulated mechanism for this is the relative quiescence of these cell populations that renders them resistant to cytotoxic agents. This simple hypothesis, however, is supported almost entirely by indirect evidence, and fails to explain the large differences in relapse rates across different AML subtypes. To address this question, we have developed a mass cytometry (MCM) approach to assess the cell cycle of immunophenotypically complex primary samples from patients with AML. By processing samples immediately upon bone marrow harvest, we could determine if AML stem cells were quiescent in vivo and if the cell cycle properties of these cells varied between chemotherapy-responsive versus resistant AML subtypes. Methods: Bone marrow aspirates from 33 AML patients, 3 with APL, 2 with high-risk MDS, 5 with AML who achieved a CR with chemotherapy treatment, and 5 healthy donors (48 total samples) were incubated at 37°C for 15 minutes with 20uM Iodo-deoxyuridine (IdU) immediately after aspiration (<1 min), followed by fixation and storage. Samples were then analyzed with two overlapping 39-antibody MCM panels (50 markers total). Cellular barcoding was utilized to stain and analyze cells in tubes of 20 samples each, enabling direct comparison of samples to each other and to the healthy controls. Results: The high dimensionality of MCM enabled the simultaneous measurement of 25 surface markers and the identification of almost all immunophenotypic populations in human bone marrow. The use of barcoding, and the resultant ability to directly compare samples, enabled the detection of aberrant marker expression at very high resolution (2-3 fold changes). At least one surface marker aberrancy was detected in each AML sample. Unexpectedly, cell cycle analysis revealed that, compared to immunophenotypically similar normal cells, the average fraction of S-phase cells in AML samples was significantly lower. In both AML and healthy samples, the lowest S-phase fraction was found in fully differentiated populations and in hematopoietic stem cells (HSCs) while committed progenitor populations (myelo-monoblasts, promyelocytes, erythroblasts) exhibited the highest S-phase fraction. The HSC and early progenitor cell populations from patients with CBF AML (t(8;21) and inv(16)) demonstrated a significantly higher S-phase fraction than the same cell populations from the other AML samples (7.76% vs. 2.66%; p=0.0014). Furthermore, samples with FLT3-ITD mutations exhibited the lowest S-phase fraction in the HSC and early progenitor cell populations (0.63%), which was significantly lower than the S-phase fraction of the other AML samples (4.37%; p=9.3x10-4). Finally, a subset of patients (n=10) was being treated with hydroxyurea (HU) at the time of their bone marrow aspiration. The effect of HU treatment was manifest as a reduction in the IdU incorporation rate (with no change in S-phase fraction) in the cells of the treated patients. However, neither cell cycle arrest nor apoptosis were observed in these samples. This is in contrast with the commonly observed occurrence of both in leukemic cell lines treated in vitro with HU. Conclusions: By combining fresh sample processing with high-dimensional MCM analysis, we developed an innovative approach for the analysis of hematologic malignancies. Our results suggest that the relative sensitivity of CBF AML to cytotoxic chemotherapy may be the result of the increased fraction of S-phase cells within the HSC and early progenitor cell populations. Conversely, HSC and early progenitor cell populations from patients with FLT3-ITD mutations would be expected to be particularly resistant to cytarabine-based consolidation therapy due to the very low frequency of S-phase cells within these populations. This finding, combined with our observation that the stem and early progenitor cells from the FLT3-ITD samples have high expression of CD33, may provide a mechanistic explanation for the improved disease-free survival recently reported for FLT3-ITD AML patients treated with fractioned gemtuzumab ozogamicin in combination with standard therapy. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures Behbehani: Fluidigm: Consultancy. Medeiros:Agios: Consulting - Ad board Other. Nolan:Fluidigm, Inc: Consultancy, Equity Ownership.


2016 ◽  
Vol 311 (2) ◽  
pp. E367-E379 ◽  
Author(s):  
Alicia Maldré Vaca ◽  
Carolina Beatriz Guido ◽  
Liliana del Valle Sosa ◽  
Juan Pablo Nicola ◽  
Jorge Mukdsi ◽  
...  

Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.


Thyroid ◽  
2017 ◽  
Vol 27 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Risheng Ma ◽  
Syed A. Morshed ◽  
Rauf Latif ◽  
Terry F. Davies

Endocrinology ◽  
2006 ◽  
Vol 147 (6) ◽  
pp. 3007-3015 ◽  
Author(s):  
Maria C. Arufe ◽  
Min Lu ◽  
Atsushi Kubo ◽  
Gordon Keller ◽  
Terry F. Davies ◽  
...  

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Yiqi Wang ◽  
Zhimin Tang ◽  
Ping Gu

Abstract Retinal degeneration (RD) is one of the dominant causes of irreversible vision impairment and blindness worldwide. However, the current effective therapeutics for RD in the ophthalmologic clinic are unclear and controversial. In recent years, extensively investigated stem/progenitor cells—including retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs)—with proliferation and multidirectional differentiation potential have presented opportunities to revolutionise the ultimate clinical management of RD. Herein, we provide a comprehensive overview on the progression of clinical trials for RD treatment using four types of stem/progenitor cell-based transplantation to replace degenerative retinal cells and/or to supplement trophic factors from the aspects of safety, effectiveness and their respective advantages and disadvantages. In addition, we also discuss the emerging role of stem cells in the secretion of multifunctional nanoscale exosomes by which stem cells could be further exploited as a potential RD therapy. This review will facilitate the understanding of scientists and clinicians of the enormous promise of stem/progenitor cell-based transplantation for RD treatment, and provide incentive for superior employment of such strategies that may be suitable for treatment of other diseases, such as stroke and ischaemia–reperfusion injury.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qingsong Ran ◽  
Qiliang Zhou ◽  
Kanako Oda ◽  
Akihiro Yasue ◽  
Manabu Abe ◽  
...  

The generation of mature, functional, thyroid follicular cells from pluripotent stem cells would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro differentiation remains difficult. We earlier reported the in vivo generation of lung organs via blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in thyroid development and branching morphogenesis, but any role thereof in thyroid organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst complementation. The tissues were morphologically normal and physiologically functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid generation in vivo via blastocyst complementation will aid functional thyroid regeneration.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2193
Author(s):  
Xiaowen Bai

Stem cell science is among the fastest moving fields in biology, with many highly promising directions for translatability. To centralize and contextualize some of the latest developments, this Special Issue presents state-of-the-art research of adult stem cells, induced pluripotent stem cells (iPSCs), and embryonic stem cells as well as cancer stem cells. The studies we include describe efficient differentiation protocols of generation of chondrocytes, adipocytes, and neurons, maturation of iPSC-derived cardiomyocytes and neurons, dynamic characterization of iPSC-derived 3D cerebral organoids, CRISPR/Cas9 genome editing, and non-viral minicircle vector-based gene modification of stem cells. Different applications of stem cells in disease modeling are described as well. This volume also highlights the most recent developments and applications of stem cells in basic science research and disease treatments.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 763-763
Author(s):  
Dan S. Kaufman ◽  
Petter S. Woll ◽  
Colin H. Martin ◽  
Jeffrey S. Miller

Abstract Hematopoiesis from human embryonic stem cells (hESCs) follows developmental kinetics similar to what is observed during normal human ontogeny. Myeloid, erythroid and megakaryocytic progenitors can be routinely generated from hESCs. However, little is known about the ability of hESCs to differentiate into the lymphoid lineage. Natural killer (NK) cells are important mediators of donor anti-host alloreactivity seen after allogeneic transplant for myeloid leukemias. Our studies use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. CD34+ and CD34+CD45+ hESC-derived hematopoietic progenitor cells were co-cultured with inactivated AFT024 stromal cells in medium supplemented with IL-7, IL-15, SCF and FL. Generation of NK cells was established by phenotypic and functional analysis. CD34+ umbilical cord blood (UCB) cells were utilized as a positive control. After 14 days of culture of CD34+ hESC-derived cells, more than 90% of the cells express CD45, a pan-hematopoietic cell marker, but few CD56+ cells are observed. At 21 days of culture a distinct CD56+CD45+ cell population develops (14.9%), which increases to 37.5% of cells after 28 days of culture. Similar results are observed for CD34+CD45+ hESC-derived cells, characterizing that both CD34+ and CD34+CD45+ cell populations contain hematopoietic progenitors with NK cell developmental potential. Limiting dilution analysis of hESC-derived progenitor cells demonstrates CD34+ hESC-derived cells have a low NK cell progenitor frequency. However, sorting for CD34+CD45+ hESC-derived cells significantly increased the NK cell cloning frequency (1.92% ± 1.20%) to a level comparable to the frequency observed for CD34+ UCB cells cultured in the same manner (3.57% ± 1.68%). The hESC-derived NK cells also express receptors known to regulate NK cell cytolytic activity, including killer-Ig-like receptors (KIRs), C-type lectin-like receptors (CD94 and NKG2A) and natural cytotoxicity receptors (NKp30, NKp44, and NKp46). Furthermore, hESC-derived NK cells also express CD16, an Fc-receptor typically expressed on more mature NK cells. The expression of KIRs is significantly higher for the hESC-derived NK cells compared to the UCB-derived NK cells. This may lead to future strategies to generate selective alloreactive NK cell populations for therapy. To investigate the functional properties of the hESC-derived NK cells, cytolytic activity was tested against K562 erythroleukemia cells and Raji B-lymphoblastoid cells. hESC-derived NK cells effectively killed K562 cells, with activity similar to that seen with UCB-derived NK cells. As expected, Raji cells were resistant to direct cytotoxicity by both hESC and UCB-derived NK cells. However, treatment of Raji cells with anti-CD20 antibody results in effective antibody-dependent cell-mediated cytoxicity by the hESC-derived NK cells. The hESC-derived NK cells also demonstrate ability to upregulate production of cytokines such as IFN-γ upon stimulation. Furthermore, we also find that hESC-derived progenitors also have T cell and/or B cell potential based on cells that express Ikaros, Rag1, and IL7Rα. These results demonstrate that the CD34+ and CD34+CD45+ hESC-derived cell populations contain lymphoid progenitor cells that can develop into both innate and adaptive immune cells. The ability to generate functional NK cells that can target and lyse human tumor cells via two distinct mechanisms suggests potentially novel anti-cancer therapy applications of hESCs.


2009 ◽  
Vol 03 (01) ◽  
pp. 75 ◽  
Author(s):  
Eric J Mayer ◽  
Balini Balasubramaniam ◽  
Debra A Carter ◽  
Andrew D Dick ◽  
◽  
...  

The quest to understand the ability of the retina to not only sustain its function throughout life but also, as a result of pathological degeneration, to promote repair via stimulating endogenous regenerative capacity or via cell replacement is nearing clinical assessment. However, we still need to understand the kinetics and dynamics of cell replacement in healthy or ageing retina. This would lead to the possibility of manipulating endogenous ocular progenitor cells towards facilitating cell replacement when degeneration has ensued. Arguably, the most clinically immediate benefits will arise from cell-based therapies. However, the questions of which cells to use to maximise clinical outcome – including ocular sources or manipulation of non-ocular cell sources, including embryonic stem cells, as neuralised progenitor cell sources – and how best to deliver therapy remains unqualified. Ultimate success will depend on integration into damaged host tissue, prevention of gliosis and knowing which cells to target to replace.


Sign in / Sign up

Export Citation Format

Share Document