scholarly journals Thyrotropin receptor signaling deficiency impairs spatial learning and memory in mice

2020 ◽  
Vol 246 (1) ◽  
pp. 41-55
Author(s):  
Sisi Luan ◽  
Wenkai Bi ◽  
Shulong Shi ◽  
Li Peng ◽  
Zhanbin Li ◽  
...  

Subclinical hyperthyroidism, a condition characterized by decreased thyroid-stimulating hormone (TSH) and normal concentration of thyroid hormone, is associated with an elevated risk for cognitive impairment. TSH is the major endogenous ligand of the TSH receptor (TSHR) and its role is dependent on signal transduction of TSHR. It has not, however, been established whether TSHR signaling is involved in the regulation of cognition. Here, we utilized Tshr knockout mice and found that Tshr deletion led to significantly compromised performance in learning and memory tests. Reduced dendritic spine density and excitatory synaptic density as well as altered synaptic structure in CA1 subfield of the hippocampus were also noted. Furthermore, the synapse-related gene expression was altered in the hippocampus of Tshr -/- mice. These findings suggest that TSHR signaling deficiency impairs spatial learning and memory, which discloses a novel role of TSHR signaling in brain function.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Sisi Luan ◽  
He Zhao ◽  
Jiajun Zhao

Abstract Background: Subclinical hyperthyroidism is associated with cognitive impairment, but the mechanism has remained unclear. As subclinical hyperthyroidism is characterized by significantly decreased TSH levels, this study aimed to investigate whether TSH regulates cognitive function. Methods: The correlation between TSH and cognitive impairment was investigated in a cross-sectional population study. The role of TSH/TSH receptor (TSHR) signaling in spatial learning and memory was further examined by behavior tests in Tshr-/- mice. Dendritic spine, synaptic density and structure of hippocampal CA1 pyramidal neurons were detected by Golgi’s method and electron microscopy. The mRNA and protein expression levels of learning and memory-related genes were assessed by RNA sequencing, real-time PCR, immunoblotting and immunofluorescence approaches. Results: Serum TSH level correlated negatively with cognitive impairment in the current population. Consistently, Tshr deletion in mice led to significantly compromised performance in hippocampus-dependent tasks, reduced dendritic spine density and excitatory synaptic density as well as altered synaptic structure in CA1 subfield of the hippocampus. Furthermore, the mRNA levels of learning and memory-related genes were altered, and protein levels of CREB-regulated genes were downregulated in the hippocampus of Tshr-/- mice. Conclusions: These findings reveal that TSH/TSHR signaling ablation impairs spatial learning and memory, indicating a decline in TSH level might contribute to the increased prevalence of cognitive impairment in subclinical hyperthyroidism patients.


2014 ◽  
Vol 1587 ◽  
pp. 112-118 ◽  
Author(s):  
Majid Taati ◽  
Mehrnoush Moghaddasi ◽  
Masoumeh Esmaeili ◽  
Soheila Pourkhodadad ◽  
Hassan Nayebzadeh

2009 ◽  
Vol 96 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Marna S. Costanzo ◽  
Nigel C. Bennett ◽  
Heike Lutermann

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115556 ◽  
Author(s):  
Yongmei Xiao ◽  
Hongjun Fu ◽  
Xiaojie Han ◽  
Xiaoxia Hu ◽  
Huaiyu Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document