The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress

2016 ◽  
Vol 96 ◽  
pp. 263-272 ◽  
Author(s):  
Elham Soleimani ◽  
Iran Goudarzi ◽  
Kataneh Abrari ◽  
Taghi Lashkarbolouki
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Ren ◽  
Jingwei Chen ◽  
Bingxuan Li ◽  
Mengzhou Zhang ◽  
Bei Yang ◽  
...  

Introduction. Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods. The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results. The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion. Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.


2014 ◽  
Vol 1587 ◽  
pp. 112-118 ◽  
Author(s):  
Majid Taati ◽  
Mehrnoush Moghaddasi ◽  
Masoumeh Esmaeili ◽  
Soheila Pourkhodadad ◽  
Hassan Nayebzadeh

2009 ◽  
Vol 96 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Marna S. Costanzo ◽  
Nigel C. Bennett ◽  
Heike Lutermann

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115556 ◽  
Author(s):  
Yongmei Xiao ◽  
Hongjun Fu ◽  
Xiaojie Han ◽  
Xiaoxia Hu ◽  
Huaiyu Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document