scholarly journals Spermatogonial stem cells from domestic animals: progress and prospects

Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. R65-R74 ◽  
Author(s):  
Yi Zheng ◽  
Yaqing Zhang ◽  
Rongfeng Qu ◽  
Ying He ◽  
Xiue Tian ◽  
...  

Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.

2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Komal Loya ◽  
Reto Eggenschwiler ◽  
Kinarm Ko ◽  
Malte Sgodda ◽  
Francoise André ◽  
...  

Abstract In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


2011 ◽  
Vol 17 (4) ◽  
pp. 474-497 ◽  
Author(s):  
Monika Nowak-Imialek ◽  
Wilfried Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

AbstractPluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bertrand Pain

AbstractOrganoids are three-dimensional structures that are derived from the self-organization of stem cells as they differentiate in vitro. The plasticity of stem cells is one of the major criteria for generating organoids most similar to the tissue structures they intend to mimic. Stem cells are cells with unique properties of self-renewal and differentiation. Depending on their origin, a distinction is made between pluripotent (embryonic) stem cells (PSCs), adult (or tissue) stem cells (ASCs), and those obtained by somatic reprogramming, so-called induced pluripotent stem cells (iPSCs). While most data since the 1980s have been acquired in the mouse model, and then from the late 1990s in humans, the process of somatic reprogammation has revolutionized the field of stem cell research. For domestic animals, numerous attempts have been made to obtain PSCs and iPSCs, an approach that makes it possible to omit the use of embryos to derive the cells. Even if the plasticity of the cells obtained is not always optimal, the recent progress in obtaining reprogrammed cells is encouraging. Along with PSCs and iPSCs, many organoid derivations in animal species are currently obtained from ASCs. In this study, we present state-of-the-art stem cell research according to their origins in the various animal models developed.


2020 ◽  
Vol 155 ◽  
pp. 213-221
Author(s):  
Rungsun Duangkaew ◽  
Fumi Kezuka ◽  
Kensuke Ichida ◽  
Surintorn Boonanuntanasarn ◽  
Goro Yoshizaki

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiying Wang ◽  
Linlin Liu ◽  
Chang Liu ◽  
Lingling Wang ◽  
Jiyu Chen ◽  
...  

Abstract Background Depletion of oocytes leads to ovarian aging-associated infertility, endocrine disruption and related diseases. Excitingly, unlimited oocytes can be generated by differentiation of primordial germ cell like cells (PGCLCs) from pluripotent stem cells. Nevertheless, development of oocytes and follicles from PGCLCs relies on developmentally matched gonadal somatic cells, only available from E12.5 embryos in mice. It is therefore imperative to achieve an in vitro source of E12.5 gonadal somatic cells. Methods We explored to identify small molecules, which can induce female embryonic stem cells (ESCs) into gonadal somatic cell like cells. Results Using RNA-sequencing, we identified signaling pathways highly upregulated in E12.5_gonadal somatic cells (E12.5_GSCs). Through searching for the activators of these pathways, we identified small-molecule compounds Vitamin C (Vc) and AM580 in combination (V580) for inducing differentiation of female embryonic stem cells (ESCs) into E12.5_GSC-like cells (E12.5_GSCLCs). After V580 treatment for 6 days and sorted by a surface marker CD63, the cell population yielded a transcriptome profile similar to that of E12.5_GSCs, which promoted meiosis progression and folliculogenesis of primordial germ cells. This approach will contribute to the study of germ cell and follicle development and oocyte production and have implications in potentially treating female infertility. Conclusion ESCs can be induced into embryonic gonadal somatic cell like cells by small molecules.


Genetika ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 813-823
Author(s):  
Sanja Rascanin ◽  
Mirjana Jovanovic ◽  
Dejan Stevanovic ◽  
Nemanja Rancic

The discovery of Induced Pluripotent Stem Cells (iPSCs) opened the possibilities for reprogramming adult somatic cells back to a pluripotent state in vitro by inducing a forced expression of specific transcription factors. Thus, iPSCs might have potential application in regenerative medicine, transplantation, avoidance of tissue rejection, disease modeling, and drug testing. Because of apparent ethical issues connected with donation and derivation of biomaterials, iPSCs are considered as a research alternative to ethically highly disputed Embryonic Stem Cells (ESCs). Objective: The aim of this paper was to describe the development of a questionnaire for evaluating information, knowledge, and attitudes on donation, storage, and application of iPSCs (i.e., the QIPSC). We performed a prospective qualitative study based on the development, validation and reliability testing of the QIPSC. The study included 122 respondents and the final version of the QIPSC with 34 items. The reliability analysis for part of information and knowledge of respondents according to iPSCs was then performed with the questions included in this two-component model and obtained a Cronbach's alpha value of 0.783 and 0.870, respectively. It has been shown that the range of correct answers to questions in part of knowledge of respondents according to iPSCs was from 17.2-63.1%. The results of our study show that the QIPSC was a unique, reliable, and valid questionnaire for assessing the level of information, knowledge, and attitudes on donation, storage, and application of iPSCs.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Letizia De Chiara ◽  
Elvira Smeralda Famulari ◽  
Sharmila Fagoonee ◽  
Saskia K. M. van Daalen ◽  
Stefano Buttiglieri ◽  
...  

Mesenchymal stem cells hold great promise for regenerative medicine as they can be easily isolated from different sources such as adipose tissue, bone marrow, and umbilical cord blood. Spontaneously arising pluripotent stem cells can be obtained in culture from murine spermatogonial stem cells (SSCs), while the pluripotency of the human counterpart remains a matter of debate. Recent gene expression profiling studies have demonstrated that embryonic stem cell- (ESC-) like cells obtained from the human testis are indeed closer to mesenchymal stem cells (MSCs) than to pluripotent stem cells. Here, we confirm that colonies derived from human testicular cultures, with our isolation protocol, are of mesenchymal origin and do not arise from spermatogonial stem cells (SSCs). The testis, thus, provides an important and accessible source of MSCs (tMSCs) that can be potentially used for nephrotoxicity testing in vitro. We further demonstrate, for the first time, that tMSCs are able to secrete microvesicles that could possibly be applied to the treatment of various chronic diseases, such as those affecting the kidney.


2004 ◽  
Vol 16 (9) ◽  
pp. 22
Author(s):  
S. Schlatt

The testis contains undifferentiated spermatogonia and is therefore the only adult organ populated with proliferating germline cells. Whereas the biology of these cells is quite well understood in rodents, their modes of mitotic expansion and differentiation are poorly understood in primates. The existence of these cells offers clinically relevant options for preservation and restoration of male fertility. New approaches based on male germ cell transplantation and testicular tissue grafting can be applied to generate a limited number of sperm and could therefore be considered as important new avenues applicable to a variety of disciplines like animal conservation, genetic germline modification or restoration of fertility in oncological patients. In principle, germ cell transplantation presents a removal of the stem cell from the donor's niche and a transfer into the niche of a recipient. Grafting can be considered as a transplantation of the stem cell in conjunction with its niche. Germ cell transplantation of human spermatogonia into mouse testes revealed that the stem cells survive and expand but are not able to differentiate and complete spermatogenesis. We have developed an approach to infuse germ cells into monkey and human testes and showed that germ cell transplantation is feasible as an autologous approach in primates. Furthermore, we applied germ cell transplantation in the monkey model mimicking a gonadal protection strategy for oncological patients. Ectopic xenografting of testicular tissue was applied to generate fertile sperm from a variety of species. Newborn testicular tissue was grafted into the back skin of immunodeficient mice and developed up to qualitatively complete spermatogenesis. The rapid progress in the development of novel experimental strategies to generate sperm from cryopreserved spermatogonial stem cells or immature testicular tissue will lead to many new options for germline manipulation and fertility preservation.


2019 ◽  
Vol 102 (3) ◽  
pp. 620-638 ◽  
Author(s):  
Yoshitake Sakai ◽  
Tomonori Nakamura ◽  
Ikuhiro Okamoto ◽  
Sayuri Gyobu-Motani ◽  
Hiroshi Ohta ◽  
...  

Abstract In vitro reconstitution of germ-cell development from pluripotent stem cells (PSCs) has created key opportunities to explore the fundamental mechanisms underlying germ-cell development, particularly in mice and humans. Importantly, such investigations have clarified critical species differences in the mechanisms regulating mouse and human germ-cell development, highlighting the necessity of establishing an in vitro germ-cell development system in other mammals, such as non-human primates. Here, we show that multiple lines of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in cynomolgus monkeys (Macaca fascicularis; cy) can be maintained stably in an undifferentiated state under a defined condition with an inhibitor for WNT signaling, and such PSCs are induced efficiently into primordial germ cell-like cells (PGCLCs) bearing a transcriptome similar to early cyPGCs. Interestingly, the induction kinetics of cyPGCLCs from cyPSCs is faster than that of human (h) PGCLCs from hPSCs, and while the transcriptome dynamics during cyPGCLC induction is relatively similar to that during hPGCLC induction, it is substantially divergent from that during mouse (m) PGCLC induction. Our findings delineate common as well as species-specific traits for PGC specification, creating a foundation for parallel investigations into the mechanism for germ-cell development in mice, monkeys, and humans.


2007 ◽  
Vol 19 (6) ◽  
pp. 732 ◽  
Author(s):  
I. Dobrinski ◽  
A. J. Travis

The transplantation of spermatogonial stem cells between males results in a recipient animal producing spermatozoa carrying a donor’s haplotype. First pioneered in rodents, this technique has now been used in several animal species. Importantly, germ cell transplantation was successful between unrelated, immuno-competent large animals, whereas efficient donor-derived spermatogenesis in rodents requires syngeneic or immuno-compromised recipients. Transplantation requires four steps: recipient preparation, donor cell isolation, transplantation and identifying donor-derived spermatozoa. There are two main applications for this technology. First, genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in production of transgenic spermatozoa. Transgenesis through the male germ line has tremendous potential in species in which embryonic stem cells are not available and somatic cell nuclear transfer and reprogramming pose several problems. Second, spermatogonial stem cell transplantation within or between species offers a means of preserving the reproductive potential of genetically valuable individuals. This might have significance in the captive propagation of non-domestic animals of high conservation value. Transplantation of germ cells is a uniquely valuable approach for the study, preservation and manipulation of male fertility in mammalian species.


Sign in / Sign up

Export Citation Format

Share Document