scholarly journals Derivation, growth and applications of human embryonic stem cells

Reproduction ◽  
2004 ◽  
Vol 128 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Miodrag Stojkovic ◽  
Majlinda Lako ◽  
Tom Strachan ◽  
Alison Murdoch

Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass cells of blastocysts with the potential to maintain an undifferentiated state indefinitely. Fully characterised hES cell lines express typical stem cell markers, possess high levels of telomerase activity, show normal karyotype and have the potential to differentiate into numerous cell types under in vitro and in vivo conditions. Therefore, hES cells are potentially valuable for the development of cell transplantation therapies for the treatment of various human diseases. However, there are a number of factors which may limit the medical application of hES cells: (a) continuous culture of hES cells in an undifferentiated state requires the presence of feeder layers and animal-based ingredients which incurs a risk of cross-transfer of pathogens; (b) hES cells demonstrate high genomic instability and non-predictable differentiation after long-term growth; and (c) differentiated hES cells express molecules which could cause immune rejection. In this review we summarise recent progress in the derivation and growth of undifferentiated hES cells and their differentiated progeny, and the problems associated with these techniques. We also examine the potential use of the therapeutic cloning technique to derive isogenic hES cells.

2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Wei Cui ◽  
Agnes Cheong ◽  
Yongsheng Wang ◽  
Yuran Tsuchida ◽  
Yong Liu ◽  
...  

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


2009 ◽  
Vol 21 (9) ◽  
pp. 63
Author(s):  
L. Ganeshan ◽  
C. O'Neill

The developmental viability of the early embryo requires the formation of the inner cell mass (ICM) at the blastocyst stage. The ICM contributes to all cell lineages within the developing embryo in vivo and the embryonic stem cell (ESC) lineage in vitro. Commitment of cells to the ICM lineage and its pluripotency requires the expression of core transcription factors, including Nanog and Pou5f1 (Oct4). Embryos subjected to culture in vitro commonly display a reduced developmental potential. Much of this loss of viability is due to the up-regulation of TRP53 in affected embryos. This study investigated whether increased TRP53 disrupts the expression of the pluripotency proteins and the normal formation of the ICM lineage. Mouse C57BL6 morulae and blastocysts cultured from zygotes (modHTF media) possessed fewer (p < 0.001) NANOG-positive cells than equivalent stage embryos collected fresh from the uterus. Blocking TRP53 actions by either genetic deletion (Trp53–/–) or pharmacological inhibition (Pifithrin-α) reversed this loss of NANOG expression during culture. Zygote culture also resulted in a TRP53-dependent loss of POU5F1-positive cells from resulting blastocysts. Drug-induced expression of TRP53 (by Nutlin-3) also caused a reduction in formation of pluripotent ICM. The loss of NANOG- and POU5F1-positive cells caused a marked reduction in the capacity of blastocysts to form proliferating ICM after outgrowth, and a consequent reduced ability to form ESC lines. These poor outcomes were ameliorated by the absence of TRP53, resulting in transmission distortion in favour of Trp53–/– zygotes (p < 0.001). This study shows that stresses induced by culture caused TRP53-dependent loss of pluripotent cells from the early embryo. This is a cause of the relative loss of viability and developmental potential of cultured embryos. The preferential survival of Trp53–/– embryos after culture due to their improved formation of pluripotent cells creates a genetic danger associated with these technologies.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Sergey Rodin ◽  
Liselotte Antonsson ◽  
Colin Niaudet ◽  
Oscar E. Simonson ◽  
Elina Salmela ◽  
...  

Abstract Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.


2021 ◽  
Vol 22 (23) ◽  
pp. 12918
Author(s):  
Man-Ling Zhang ◽  
Yong Jin ◽  
Li-Hua Zhao ◽  
Jia Zhang ◽  
Meng Zhou ◽  
...  

The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFβ signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
J. K. Park ◽  
H. S. Kim ◽  
K. J. Uh ◽  
K. H. Choi ◽  
H. M. Kim ◽  
...  

Since pluripotent cells were first derived from the inner cell mass (ICM) of mouse blastocysts, tremendous efforts have been made to establish embryonic stem cell (ESC) lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to derive pluripotent cells of naïve state that represents full pluripotency, due to the frequent occurrence of spontaneous differentiation into an EpiSC-like state during culture in pigs. We have been able to derive EpiSC-like porcine embryonic stem cell (pESC) lines of a differentiated non-ES cell state from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) into porcine fibroblast cells. In this study, we analysed characteristics such as marker expression, pluripotency and the X chromosome inactivation (XCI) status of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1-60 and TRA 1-81. Furthermore all of these cell lines showed in vitro differentiation potential; female XCI activity and a normal karyotype. Here we provide preliminary results that suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. This work was supported by the BioGreen 21 Program (#20070401034031, PJ0081382011), Rural Development Administration, Republic of Korea.


2014 ◽  
Vol 369 (1657) ◽  
pp. 20130541 ◽  
Author(s):  
Thorsten Boroviak ◽  
Jennifer Nichols

Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis.


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S Tielens ◽  
B Verhasselt ◽  
J Liu ◽  
M Dhont ◽  
J Van Der Elst ◽  
...  

Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Sincein vitroculture may influence Oct-4 expression, we investigated to what extent blastocysts culturedin vitrofrom the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We comparedin vivowithin vitroderived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells’ differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of thein vitroderived blastocysts, 17% gave rise to ES cells vs 38% of thein vivoblastocysts. Six-day old outgrowths fromin vivodeveloped blastocysts expressed Oct-4 in 55% of the cases vs 31% of thein vitroderived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collectedin vivoblastocysts compared toin vitrocultured blastocysts.In vitrocultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level thanin vivoblastocysts.


2009 ◽  
Vol 21 (1) ◽  
pp. 235 ◽  
Author(s):  
M. D. Goissis ◽  
F. R. O. de Barros ◽  
M. G. Marques ◽  
C. M. Mendes ◽  
M. P. Milazzotto ◽  
...  

Establishment of embryonic stem cell (ESC) culture in pigs has not been achieved. Verification of pluripotency markers is necessary for validation of a pluripotent cell line. Not all markers observed in ESC from other species are characterized in swine embryos. The objective of this study was to characterize CD9 and α6-integrin expression in porcine blastocysts and to derive porcine ESC using Matrigel. In vitro or in vivo porcine blastocysts were submitted to total RNA extraction for RT-PCR, fixation for immunocytochemistry or immunosurgery for culture of inner cell mass. Expression of Oct-4, CD9, and α6-integrin was detected by PCR. CD9 and α6-integrin PCR products had their nucleotide sequence assessed and compared with public nucleotide database. CD9 product was identical to CD9 porcine sequences and α6-integrin product was similar to human and equine α6-integrin. Immunocytochemistry revealed Oct-4 expression in cytoplasm of the inner cell mass (ICM) and trophoblast cells. CD9 and α6-integrin were observed preferentially on trophoblast cells. No ESC colonies were obtained using co-culture on mouse embryonic fibroblasts (MEF) or on Matrigel. This study describes for the first time expression of CD9 and α6-integrin in porcine blastocysts. Financial support: Fapesp 05/57314-0.


2008 ◽  
Vol 20 (9) ◽  
pp. 85
Author(s):  
B. M. Murray ◽  
C. M. O.'Brien ◽  
J. L. Johnson ◽  
B. J. Conley ◽  
P. Bello ◽  
...  

The establishment of true, fully characterised embryonic stem (ES) cells from livestock, (eg sheep) has yet to be reported. Such cells could make a significant impact on assisted reproductive technologies, vaccine delivery, and animal health and well being in the livestock industries. To date in sheep, there is a single report of putative ES cells which were maintained in an undifferentiated state for only 2 passages. Here we report the isolation and culture of pluripotent ES-like cells from in vivo derived, vitrified, sheep blastocysts. The inner cell mass of blastocysts were isolated by immunosurgery, cultured in Stem Cell Sciences' (SCS) novel inhibitor-based media, on a feeder layer of mouse embryonic fibroblasts (MEFs), resulting in putative ovine ES cells proliferating to at least passage 5. One cell line, BMCOV002, was established out of four thaw-recovered embryos. The colonies formed compact, near homogenous, small cell, multilayered, and well defined dome shaped masses that were morphologically similar to both mouse and human ES cell colonies. A peripheral halo of filamentous differentiated cells was detected in selected colonies from passage 3 to passage 5. The putative ovine ES-like cells were passaged by mechanical excision between days 6–7, and these colonies stained positive for alkaline phosphatase at both passage 3 and passage 5. Expression levels of genes encoding the pluripotent transcription factors OCT4, SOX2, REX1 and NANOG are shown using RT PCR in cells from passage 3. An important first step in studying the properties of ovine ES-like cells is the ability shown here to isolate and culture cells. Our attention now is focussed on maintaining these cells for some months in an undifferentiated state, and on being able to successfully cryopreserve and regenerate these cell lines.


Sign in / Sign up

Export Citation Format

Share Document