scholarly journals Synthesis and characterization of high molecular weight amphoteric terpolymer based on acrylamide, 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt and (3-acrylamidopropyl)trimethylammonium chloride for oil recovery

2021 ◽  
Vol 103 (4) ◽  
pp. 12-20
Author(s):  
Iskander Gussenov ◽  
Nurbatyr Mukhametgazy ◽  
Alexey Shakhvorostov ◽  
Sarkyt Kudaibergenov

High molecular weight amphoteric terpolymer based on a nonionic monomer, acrylamide (AAm), an anionic monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS), and a cationic monomer, (3-acrylamidopropyl) trimethylammonium chloride (APTAC), was prepared using free-radical copolymerization in an aqueous solution and characterized by 1H NMR, FTIR, GPC, DLS, zeta potential and viscometry. The polymer was shown to be viscosifying, and therefore can be utilized as a polymer flooding agent in the high salinity and temperature conditions of oil reservoirs. Injection of 0.25 wt.% of amphoteric terpolymer, dissolved in 200-300 g∙L-1 brine, into high and low permeability sand pack models demonstrated that the oil recovery factor (ORF) increases by up to 23-28% in comparison with saline water flooding. This is explained by an increase in the viscosity of brine solution due to disruption of intra- and interionic contacts between oppositely charged AMPS and APTAC moieties, demonstrating the antipolyelectrolyte effect. In high saline water, the anions and cations of salts screen the electrostatic attraction between positively and negatively charged macroions, resulting in expansion of the macromolecule. This phenomenon leads to an increase in the viscosifying effect on the brine solution, thus decreasing the mobility factor (M), which is defined as the ratio of displacing phase mobility (water) to displaced phase mobility (oil).

2020 ◽  
Vol 100 (4) ◽  
pp. 119-127
Author(s):  
N. Mukhametgazy ◽  
◽  
I.Sh. Gussenov ◽  
A.V. Shakhvorostov ◽  
S.E. Kudaibergenov ◽  
...  

In our previous papers [1, 2] we considered the behavior of linear and crosslinked polyampholytes based on fully charged anionic monomer — 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) and cationic monomer — (3-acrylamidopropyl)trimethylammonium chloride (APTAC) in aqueous-salt solutions, swelling and mechanical properties. In the present paper we report the applicability of salt tolerant amphoter-ic terpolymers composed of AMPS, APTAC and acrylamide (AAm) in enhanced oil recovery (EOR). The amphoteric terpolymers of different compositions, particularly [AAm]:[AMPS]:[APTAC] = 50:25:25; 60:20:20; 70:15:15; 80:10:10 and 90:5:5 mol.% were prepared by free-radical polymerization, identified and their viscosifying ability with respect to reservoir saline water (salinity is 163 g⋅L-1) at 60 °C was tested. It was found that due to polyampholytic nature, the AAm-AMPS-APTAC terpolymers exhibited improved viscosifying behavior at high salinity water. As a result, the appropriate salt tolerant sample [AAm]:[AMPS]:[APTAC] = 80:10:10 mol.% was selected for polymer flooding experiments. Polymer flood-ing experiments on high permeable sand pack model demonstrated that only 0.5 % oil was recovered by am-photeric terpolymer. While injection of polyampholyte solution into preliminarily water flooded core sample resulted in the increase of oil recovery up to 4.8–5 %. These results show that under certain conditions the amphoteric terpolymers have a decent oil displacement ability.


2014 ◽  
Vol 131 (20) ◽  
pp. n/a-n/a ◽  
Author(s):  
Abdul-Aziz Al-Hashmi ◽  
Rashid Al-Maamari ◽  
Ibtisam Al-Shabibi ◽  
Ahmed Mansoor ◽  
Hamed Al-Sharji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document