Escherichia coli O157 and other VTEC in the meat industry

Author(s):  
I.D. Ogden
2012 ◽  
Vol 75 (9) ◽  
pp. 1701-1708 ◽  
Author(s):  
C. I. PITTMAN ◽  
I. GEORNARAS ◽  
D. R. WOERNER ◽  
K. K. NIGHTINGALE ◽  
J. N. SOFOS ◽  
...  

Lactic acid can reduce microbial contamination on beef carcass surfaces when used as a food safety intervention, but effectiveness when applied to the surface of chilled beef subprimal sections is not well documented. Studies characterizing bacterial reduction on subprimals after lactic acid treatment would be useful for validations of hazard analysis critical control point (HACCP) systems. The objective of this study was to validate initial use of lactic acid as a subprimal intervention during beef fabrication followed by a secondary application to vacuum-packaged product that was applied at industry operating parameters. Chilled beef subprimal sections (100 cm2) were either left uninoculated or were inoculated with 6 log CFU/cm2 of a 5-strain mixture of Escherichia coli O157:H7, a 12-strain mixture of non-O157 Shiga toxin–producing E. coli (STEC), or a 5-strain mixture of nonpathogenic (biotype I) E. coli that are considered surrogates for E. coli O157:H7. Uninoculated and inoculated subprimal sections received only an initial or an initial and a second “rework” application of lactic acid in a custom-built spray cabinet at 1 of 16 application parameters. After the initial spray, total inoculum counts were reduced from 6.0 log CFU/cm2 to 3.6, 4.4, and 4.4 log CFU/cm2 for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. After the second (rework) application, total inoculum counts were 2.6, 3.2, and 3.6 log CFU/cm2 for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. Both the initial and secondary lactic acid treatments effectively reduced counts of pathogenic and nonpathogenic strains of E. coli and natural microflora on beef subprimals. These data will be useful to the meat industry as part of the HACCP validation process.


2014 ◽  
Vol 77 (11) ◽  
pp. 1982-1987 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
DAVID A. KING ◽  
BRANDON E. LUEDTKE ◽  
JOSEPH M. BOSILEVAC ◽  
...  

In the meat industry, a “high event period” (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of Escherichia coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant strain type. This was in disagreement with the current beef contamination model stating that contamination occurs when incoming pathogen load on animal hides, which consists of diverse strain types of E. coli O157:H7, exceeds the intervention capacity. Thus, we hypothesize that the HEP contamination may be due to certain in-plant colonized E. coli O157:H7 strains that are better able to survive sanitization through biofilm formation. To test our hypothesis, a collection of 45 E. coli O157:H7 strains isolated from HEP beef contamination incidents and a panel of 47 E. coli O157:H7 strains of diverse genetic backgrounds were compared for biofilm formation and sanitizer resistance. Biofilm formation was tested on 96-well polystyrene plates for 1 to 6 days. Biofilm cell survival and recovery growth after sanitization were compared between the two strain collections using common sanitizers, including quaternary ammonium chloride, chlorine, and sodium chlorite. No difference in “early stage” biofilms was observed between the two strain collections after incubation at 22 to 25°C for 1 or 2 days. However, the HEP strains demonstrated significantly higher potency of “mature” biofilm formation after incubation for 4 to 6 days. Biofilms of the HEP strains also exhibited significantly stronger resistance to sanitization. These data suggest that biofilm formation and sanitization resistance could have a role in HEP beef contamination by E. coli O157:H7, which highlights the importance of proper and complete sanitization of food contact surfaces and food processing equipment in commercial meat plants.


2006 ◽  
Vol 148 (6) ◽  
pp. 289-295 ◽  
Author(s):  
C. Zweifel ◽  
M. Kaufmann ◽  
J. Blanco ◽  
R. Stephan

2020 ◽  
Vol 23 (3) ◽  
pp. 310-318
Author(s):  
K. Koev ◽  
T. Stoyanchev ◽  
G. Zhelev ◽  
P. Marutsov ◽  
K. Gospodinova ◽  
...  

The purpose of this study was to detect the presence of shiga-toxin producing Escherichia coli (STEC) in faeces of healthy dairy cattle and to determine the sensitivity of isolates to several anti­microbial drugs. A total of 1,104 anal swab samples originating from 28 cattle farms were examined. After the primary identification, 30 strains were found to belong to serogroup О157. By means of conventional multiplex PCR, isolates were screened for presence of resistance genes stx1, stx2 and eaeА. Twenty-nine strains possesses amplicons with a size corresponding to genes stx2 and eaeA, one had amplicons also for the stx1 gene and one lacked amplicons of all three genes. Twenty-eight strains demonstrated amplicons equivalent to gene H7. The results from phenotype analysis of resistance showed preserved sensitivity to ceftriaxone, ceftazidime, cefotaxime, cephalothin, streptomycin, gentamicin, tetracycline, enrofloxacin and combinations sulfamethoxazole/trimethoprim and amoxicillin/clavulanic acid. Sensitivity to ampicillin was relatively preserved, although at a lower extent.


Sign in / Sign up

Export Citation Format

Share Document