GLIADIN AND HIGH MOLECULAR WEIGHT (HMW) GLUTENIN SUBUNITS IN THE COLLECTION OF POLISH AND FOREIGN WINTER WHEAT CULTIVARS AND THEIR RELATION TO SEDIMENTATION VALUE

1995 ◽  
pp. 180-183
Author(s):  
J. Waga ◽  
J. Winiarski
1996 ◽  
Vol 36 (4) ◽  
pp. 451 ◽  
Author(s):  
CY Liu ◽  
AJ Rathjen

A large set of durum wheat lines (79 including 8 advanced Australian breeding lines) randomly collected from 11 countries and 11 bread wheat cultivars were grown in replicated trials at 2 field locations to compare yield and gluten quality. Gluten strength, as measured by the sodium dodecyl sulfate (SDS)-sedimentation (SDSS) test, varied considerably among the durum lines and was associated with the presence of specific glutenins. Unlike some previous reports, the present study showed that durum wheat cultivars having the high molecular weight (HMW) glutenin subunits coded by Glu-B1 genes such as 13 + 16 and 7 + 8 were highly correlated with improved dough strength, which was consistent with the effect of HMW glutenin subunits on dough quality in bread wheat. Cultivars having the low molecular weight (LMW) glutenin allele LMW-2 (or gliadin band r-45) generally gave stronger gluten than lines with allele LMW-1, as reported by earlier workers. The LMW pattern LMW-IIt gave the strongest glutenin. The combined better alleles at Glu-B1 (coded bands 13 + 16, 7 + 8 v. 6 + 8, 20) and Glu-3 (patterns LMW- II, LMW-IIt v. LMW-I) showed linear cumulative effects for dough strength. All the durum lines studied had lower SDSS values than the bread wheat controls (45.8 v. 76.2 mL), though durum wheats tended to possess higher grain protein concentrations (14.0 v. 11.9%) and gave lower grain yield than bread wheat. The Australian advanced lines had higher yield and better dough strength than durums from other countries except those from CIMMYT. The Australian lines also had 1-1.5% higher protein concentration and equal or better grain yield than the bread wheat, suggesting that these lines had potential for commercial use.


2006 ◽  
Vol 57 (1) ◽  
pp. 41 ◽  
Author(s):  
Zhiying Deng ◽  
Jichun Tian ◽  
Ruibo Hu

Six winter wheat cultivars were categorised into high gluten, medium gluten, and low gluten according to their protein content and gluten index. The object of this study was to determine the accumulation of high molecular weight glutenin subunits (HMW-GS) and their relationship to dough rheological quality. They were grown in 3 replicates on experimental plots at the Shandong Agricultural University research farm in 2001. HMW-GS compositions during grain development were investigated by SDS-PAGE procedures, followed by imaging densitometry to determine quantitative variations. Initial formation time of HMW-GS was different among cultivars. HMW-GS in cultivars with high gluten had formed completely by 10 days after anthesis, but were still only partially formed at this time in cultivars having weak gluten. Accumulation quantities of HMW-GS followed with grain development. Individual HMW-GS accumulated rapidly between 25 days after anthesis and maturity. The kinetic accumulation trend for the individual HMW-GS was similar in the same type of cultivars, but quantities were different. Strong cultivars had more kinetic accumulation quantities of HMW-GS than weak cultivars. HMW-GS kinetic accumulation quantities during grain development were significantly positively correlated with dough rheological characteristics and SDS-sedimentation volume.


1997 ◽  
Vol 20 (4) ◽  
pp. 667-671 ◽  
Author(s):  
Ivan Schuster ◽  
Moacil Alves de Souza ◽  
Antônio Américo Cardoso ◽  
Carlos Sigueyuki Sediyama ◽  
Maurílio Alves Moreira

Bread-making quality is one of the most important targets in the genetic improvement of wheat. Although extensive analyses of quality traits such as farinography, sodium dodecyl sulfate (SDS) sedimentation, alveography, and baking are made in breeding programs, these analyses require high amounts of seeds which are obtained only in late generations. In this experiment the statistical correlations between the high molecular weight subunit of glutenin and bread-making quality measured by alveograph, farinograph and SDS sedimentation were evaluated. Seventeen wheat genotypes were grown under the same conditions, each producing about 1 kg of seeds for the evaluations. The high molecular weight (HMW) glutenin subunits were analyzed by SDS-PAGE. Statistical correlations were highly significant between HMW glutenin subunits and alveograph and SDS sedimentation. These results indicate the possibility of manipulating major genes for wheat seed quality by coupling traditional breeding with non-destructive single seed analysis. Only half seed is necessary to perform the SDS-PAGE analysis. Therefore, the other half seed can be planted to generate the progeny. Seed yield and SDS sedimentation were statistically correlated, indicating the possibility of simultaneous selection for both traits


2006 ◽  
Vol 4 (2) ◽  
pp. 134-143 ◽  
Author(s):  
Faris Hailu ◽  
Eva Johansson ◽  
Arnulf Merker ◽  
Getachew Belay ◽  
Harjit-Singh ◽  
...  

A collection of 120 Ethiopian tetraploid wheat accessions was analysed for high-molecular weight (HMW) glutenin subunit, low-molecular weight (LMW) glutenin subunit and omega gliadin composition by SDS–PAGE. For the HMW glutenin subunits, a new allelic variant, 2****, was detected which has not been previously described at the Glu-A1 locus. A high proportion of Glu-A1x banding pattern was observed in durum wheat. For the Glu-B1 locus four different banding patterns were detected. Among those HMW glutenin subunits, 7+8 were the most common, while subunits 14+15 and 6+8 were found to be rare. A high degree of variation was evident for the LMW glutenin subunits and D-zone omega gliadins. The association of the composition of the gluten with quality has been discussed. This wide variation can be used in improving the quality of wheat and to widen its genetic base.


2021 ◽  
Author(s):  
Pushpendra K. Gupta ◽  
Harindra S. Balyan ◽  
Parveen Chhuneja ◽  
Jai P. Jaiswal ◽  
Shubhada Tamhankar ◽  
...  

Abstract Improvement of grain protein content (GPC), loaf volume and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic zones of India. This involved use of marker-assisted backcrossing (MABC) for introgression and pyramiding of the following genes: (i) the high GPC gene Gpc-B1; (ii) HMW glutenin subunits 5 + 10 at Glu-D1 loci, and (iii) rust resistance genes, Yr36, Yr15, Lr24 and Sr24. GPC was improved by 0.8–3.3%, although high GPC was generally associated with yield penalty. Further selection among high GPC lines, allowed development of progenies with higher GPC associated with improvement in 1000-grain weight and grain yield in the following four cultivars: NI5439, UP2338, UP2382 and HUW468. The high GPC progenies (derived from NI5439) were also improved for grain quality using HMW glutenin subunits 5 + 10 at Glu-D1 loci. Similarly, progenies combining high GPC and rust resistance were developed in the backgrounds of following five cultivars: Lok1, HD2967, PBW550, PBW621 and DBW1. The improved pre-bred lines developed during the present study should prove useful for development of cultivars with improved nutritional quality associated with rust resistance in future wheat breeding programmes.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 15-19
Author(s):  
Z. Gálová ◽  
MichalíkI ◽  
H. Knoblochová ◽  
E. Gregová

Method ISTA SDS-PAGE was used for separation, detection and evaluation of high molecular weight glutenin subunits (HMW) in the different wheat species. The relation has been studied between the HMW glutenin subunit alleles and the bread-making quality of 25 world wheat cultivars and 21 regional varieties common wheat varieties (Triticum aestivum L.), 17 winter spelt wheat (Triticum spelta L.), 3 durum wheat cultivars (Triticum durum DESF.), 9 cultivars of Triticum turgidum L. and 5 cultivars of Triticum polonicum L. The highest frequency of occurrence of HMW glutenin subunits 2*, 13 + 16 and 5 + 10 were found in world wheat cultivars. In Slovak wheat varieties were analysed subunits 0, 7 + 9 and 5 + 10, 2 + 12. The HMW subunits 0, 7 + 8 with Glu-score 4 were determined in Triticum durum DESF. Three electrophoretical profile groups of different HMW glutenin subunits were found in Triticum turgidum L. and Triticum polonicum L. and six electrophoretical profile groups were determined in Triticum spelta L. The verified correlations between bread-making quality and specific HMW subunits of glutenin can be utilised by wheat breeders using SDS-PAGE of proteins as a screening test for the prediction of bread-making quality of wheat.


Sign in / Sign up

Export Citation Format

Share Document