scholarly journals Design and implementation of NTU wearable exoskeleton as an enhancement and assistive device

2006 ◽  
Vol 3 (3) ◽  
pp. 209-225 ◽  
Author(s):  
K. H. Low ◽  
X. Liu ◽  
H. Yu
2006 ◽  
Vol 3 (3) ◽  
pp. 209-225 ◽  
Author(s):  
K. H. Low ◽  
X. Liu ◽  
H. Yu

This article presents a wearable lower extremity exoskeleton (LEE) developed to enhance the ability of a human’s walking while carrying heavy loads. The ultimate goal of the current research work is to design and control a power assist system that integrates a human’s intellect for feedback and sensory purposes. The exoskeleton system in this work consists of an inner exoskeleton and an outer exoskeleton. The inner exoskeleton measures the movements of the wearer and provides these measurements to the outer exoskeleton, which supports the whole exoskeleton system to walk following the wearer. A special footpad, which is designed and attached to the outer exoskeleton, can measure the zero moment point (ZMP) of the human as well as that of the exoskeleton in time. Using the measured human ZMP as the reference, the exoskeleton’s ZMP is controlled by trunk compensation so that the exoskeleton can walk stably. A simulation platform has first been developed to examine the gait coordination through inner and outer exoskeletons. A commercially available software, xPC Target, together with other toolboxes from MATLAB, has then been used to provide a real-time operating system for controlling the exoskeleton. Real-time locomotion control of the exoskeleton is implemented in the developed environment. Finally, some experiments on different objects showed that the stable walking can be achieved in the real environment.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 216-230
Author(s):  
Anan Suebsomran

Control of assistive exoskeleton robot recently has to be crucial of development and innovation of medical application. To support daily motions for humans, control application of assistive exoskeleton robot allows for limb movement with increased strength and endurance during patient’s wearable exoskeleton robot application. The interaction between such exoskeleton device and the human body at the connecting joint, especially the knees, is the main interest of this design formation. The assistive device requires to design and to develop into innovation design aspect. This research presents the novel design of an active compliant actuation joint in order to increasing the higher torque of actuation than conventional actuation joint. Control design of the higher torque actuation usually difficult priori to conventional torque control. This will contributed to applying the supervisory control for compliant actuation that verified by experiment method. Then the hybrid Radial Basis Function neural network (RBFNN) and PID were proposed for actuating torque control methods. Experimental results show that the design of supervisory control is get better response, and higher producing torque output than the conventional design. Error of torque control of compliant actuation is not instead of [Formula: see text] N·m for applying supervisory control, RBFNN with PID controller. Indeed, the low electromagnetic interference (EMI) positioning system using LED and photodiode detector is proposed to be usable in medical application.


Healthcare ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 18
Author(s):  
Yang-Kun Ou ◽  
Yu-Lin Wang ◽  
Hua-Cheng Chang ◽  
Chun-Chih Chen

For more than a decade, many countries have been actively developing robotic assistive devices to assist in the rehabilitation of individuals with limb disability to regain function in the extremities. The exoskeleton assistive device in this study has been designed primarily for hemiplegic stroke patients to aid in the extension of fingers to open up the palm to simulate the effects of rehabilitation. This exoskeleton was designed as an anterior-support type to achieve palmar extension and acts as a robotic assistive device for rehabilitation in bilateral upper limb task training. Testing results show that this wearable exoskeleton assistive device with human factor consideration using percentile dimensions can provide comfortable wear on patients as well as adequate torque to pull individual fingers into flexion towards the palm for rehabilitation. We hope this exoskeleton device can help stroke patients with loss of function in the upper extremities to resume motor activities in order to maintain activities of daily living.


Author(s):  
Kyoungchul Kong ◽  
Doyoung Jeon

Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device for the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The fuzzy control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the 27% assistance was acquired.


2015 ◽  
Vol 24 (3) ◽  
pp. 106-113 ◽  
Author(s):  
Stephen N. Calculator

Purpose To provide an overview of communication characteristics exhibited by individuals with Angelman Syndrome (AS) and special considerations associated with the design and implementation of augmentative and alternative communication (AAC) programs. Method Results of recent studies exploring individuals' uses of AAC are reviewed, with particular emphasis on factors related to individuals' acceptance and successful uses of AAC systems. Results Not applicable Conclusion Despite their inconsistent access to practices previously found to foster individuals' acceptance of AAC systems, individuals with AS demonstrate the ability to use AAC systems, including high-tech AAC devices, successfully.


2017 ◽  
Author(s):  
Alicia Papas ◽  
Anthony D. LaMontagne ◽  
Allison J. Milner ◽  
Amanda Allisey ◽  
Andrew J. Noblet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document