scholarly journals An Atlas of Transcription Factors Expressed in Male Pupal Terminalia of Drosophila melanogaster

2019 ◽  
Vol 9 (12) ◽  
pp. 3961-3972 ◽  
Author(s):  
Ben J. Vincent ◽  
Gavin R. Rice ◽  
Gabriella M. Wong ◽  
William J. Glassford ◽  
Kayla I. Downs ◽  
...  
2002 ◽  
Vol 114 (1-2) ◽  
pp. 119-123 ◽  
Author(s):  
Elena Nabirochkina ◽  
Olga B. Simonova ◽  
Ilja B. Mertsalov ◽  
Dina A. Kulikova ◽  
Nadezshda G. Ladigina ◽  
...  

2016 ◽  
Vol 50 (6) ◽  
pp. 895-899
Author(s):  
N. A. Zolotarev ◽  
O. G. Maksimenko ◽  
Yu. V. Shidlovskii ◽  
P. G. Georgiev ◽  
A. N. Bonchuk

Genetics ◽  
1991 ◽  
Vol 127 (4) ◽  
pp. 747-759 ◽  
Author(s):  
P J Gotwals ◽  
J W Fristrom

Abstract The Broad-Complex (BR-C) is a complex regulatory locus at 2B-5 on the X chromosome of Drosophila melanogaster. The wild-type BR-C products are apparent transcription factors necessary for imaginal disc morphogenesis. Alleles of the Stubble-stubbloid (Sb-sbd) locus at 89B9-10 act as dominant enhancers of broad alleles of the BR-C. Sb-sbd wild-type products are necessary for appendage elongation. We report, here, on three new loci implicated in imaginal disc morphogenesis based on their genetic interactions with both BR-C and/or Sb-sbd mutants. Enhancer of broad (E(br)) was identified as a dominant enhancer of the br1 allele of the BR-C and is a recessive lethal. Mapping of E(br) has led to the identification of two loci, blistered and l(2)B485, mutants of which interact with E(br) and the Sb-sbd locus. Blistered, but not l(2)B485, interacts strongly with the BR-C. Alleles of the blistered locus are viable and disrupt proper wing disc morphogenesis independent of genetic interactions. All three loci map within the 0.6-map unit interval between the genetic markers speck and Irregular facets and to the cytological region 60C5-6; 60E9-10 at the tip of chromosome 2R. Genetic evidence is consistent with the view that the BR-C regulates blistered.


2010 ◽  
Vol 8 (3) ◽  
pp. 67-80 ◽  
Author(s):  
Aleksey A Moskalev ◽  
Olga A Malysheva

It was investigated the role of stress-response genes (dFOXO, dSir2, Hsp70) in regulation of life span of Drosophila in response to light regime alteration. It was revealed the FOXO-dependant mechanism of lifespan increasing at darkness conditions. The distance of lifespan of FOXO homozygous mutants at different light conditions were absent 3 times from 4 times. It was shown, that homozygotes with deletion of dSir2 have more significant difference between lifespan at standard light and darkness conditions with comparing to wild type and heterozygous strain. The same tendency was also detected the in the strains with Hsp70 deletions. It was produced the evidences of two mechanisms of light regime influence on lifespan: metabolism intensification at light conditions and neuroendocrine-determinated lifespan increasing at darkness conditions.


PLoS Genetics ◽  
2014 ◽  
Vol 10 (5) ◽  
pp. e1004303 ◽  
Author(s):  
Muriel Boube ◽  
Bruno Hudry ◽  
Clément Immarigeon ◽  
Yannick Carrier ◽  
Sandra Bernat-Fabre ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Albert Tsai ◽  
Anand K Muthusamy ◽  
Mariana RP Alves ◽  
Luke D Lavis ◽  
Robert H Singer ◽  
...  

Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here, we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogaster shavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.


Author(s):  
Bhavatharini Kasinathan ◽  
Serafin U. Colmenares ◽  
Hannah McConnell ◽  
Janet M. Young ◽  
Gary H. Karpen ◽  
...  

AbstractContrary to prevailing dogma, evolutionarily young and dynamic genes can encode essential functions. Here, we investigate genetic innovation in ZAD-ZNF genes, which encode the most abundant class of insect transcription factors. We find that evolutionarily dynamic ZAD-ZNF genes are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. To understand the basis of this unexpected correlation, we focus on the Nicknack ZAD-ZNF gene. Nicknack is an evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection, yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its closely related paralog Oddjob, also an evolutionarily dynamic, essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might provide a general explanation for the essential functions of many evolutionarily dynamic ZAD-ZNF genes in insects.


Sign in / Sign up

Export Citation Format

Share Document