scholarly journals GPC-1, a G Protein γ-Subunit, Regulates Olfactory Adaptation in Caenorhabditis elegans

Genetics ◽  
2009 ◽  
Vol 181 (4) ◽  
pp. 1347-1357 ◽  
Author(s):  
Koji Yamada ◽  
Takaaki Hirotsu ◽  
Masahiro Matsuki ◽  
Hirofumi Kunitomo ◽  
Yuichi Iino
2007 ◽  
Vol 22 (3) ◽  
pp. 713-720 ◽  
Author(s):  
Tetsuya Sakashita ◽  
Nobuyuki Hamada ◽  
Daisuke D. Ikeda ◽  
Sumino Yanase ◽  
Michiyo Suzuki ◽  
...  

Author(s):  
Yunhan Yang ◽  
Qiuli Wu ◽  
Dayong Wang

After the uptake, the environmental toxicants may cause the toxicity on organisms by activating or inhibiting certain G protein-coupled receptors (GPCRs). Nevertheless, the roles of GPCRs in mediating the response...


2004 ◽  
Vol 24 (17) ◽  
pp. 7758-7768 ◽  
Author(s):  
William F. Schwindinger ◽  
Kathryn E. Giger ◽  
Kelly S. Betz ◽  
Anna M. Stauffer ◽  
Elaine M. Sunderlin ◽  
...  

ABSTRACT Emerging evidence suggests that the γ subunit composition of an individual G protein contributes to the specificity of the hundreds of known receptor signaling pathways. Among the twelve γ subtypes, γ3 is abundantly and widely expressed in the brain. To identify specific functions and associations for γ3, a gene-targeting approach was used to produce mice lacking the Gng3 gene (Gng3 −/−). Confirming the efficacy and specificity of gene targeting, Gng3 −/− mice show no detectable expression of the Gng3 gene, but expression of the divergently transcribed Bscl2 gene is not affected. Suggesting unique roles for γ3 in the brain, Gng3 −/− mice display increased susceptibility to seizures, reduced body weights, and decreased adiposity compared to their wild-type littermates. Predicting possible associations for γ3, these phenotypic changes are associated with significant reductions in β2 and αi3 subunit levels in certain regions of the brain. The finding that the Gng3 −/− mice and the previously reported Gng7 −/− mice display distinct phenotypes and different αβγ subunit associations supports the notion that even closely related γ subtypes, such as γ3 and γ7, perform unique functions in the context of the organism.


Aging Cell ◽  
2020 ◽  
Vol 19 (6) ◽  
Author(s):  
Anubhuti Dixit ◽  
Anjali Sandhu ◽  
Souvik Modi ◽  
Meghana Shashikanth ◽  
Sandhya P. Koushika ◽  
...  

1998 ◽  
Vol 79 (05) ◽  
pp. 1008-1013 ◽  
Author(s):  
Yoshiko Banno ◽  
Tomiko Asano ◽  
Yoshinori Nozawa

SummaryDifferent phospholipase C (PLC) isoforms were located in human platelet cytosol and membranes. PLCγ2 and PLCβ3b were mainly located in the cytosol and PLCβ2 and PLCβ3a were in both cytosol and membranes by using specific antibodies against PLC isozymes (Banno Y, Nakashima S, Ohzawa M, Nozawa Y. J Biol Chem 1996; 271: 14989-94). Three PLC fractions activated by G protein βγ subunits were purified from human platelet cytosol and membrane fractions. Two PLC fractions from membranes were identified as PLCβ2 and PLCβ3a, and one from cytosol was PLCβ3b. These PLCβ isoforms were activated by the purified βγ subunits of brain G proteins in the order PLCβ3b > PLCβ3a > PLCβ2. Western blot analysis of γ subunits of the purified platelet G proteins with antibodies against various standard γ subunits revealed that the major component of the γ subunit of Gi2 and Gq was γ5, and that γ7 was a minor component. Studies using various subtypes of βγ subunits, βγ2, βγ3, and βγ7 purified from bovine brain, βγ5 from bovine lung, or βγ12 from bovine spleen, failed to show differences in their ability to stimulate the isolated platelet PLCβ isoforms. These results suggest that the βγ subunits of Gi2 and Gq have similar efficacy in regulation of effectors in human platelets.


Sign in / Sign up

Export Citation Format

Share Document