scholarly journals Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex

Genetics ◽  
2016 ◽  
Vol 205 (2) ◽  
pp. 589-603 ◽  
Author(s):  
Fabienne Cleard ◽  
Daniel Wolle ◽  
Andrew M. Taverner ◽  
Tsutomu Aoki ◽  
Girish Deshpande ◽  
...  
2009 ◽  
Vol 30 (4) ◽  
pp. 1067-1076 ◽  
Author(s):  
Mo Li ◽  
Vladimir E. Belozerov ◽  
Haini N. Cai

ABSTRACT Chromatin boundaries facilitate independent gene regulation by insulating genes from the effects of enhancers or organized chromatin. However, the mechanisms of boundary action are not well understood. To investigate whether boundary function depends on a higher order of chromatin organization, we examined the function of several Drosophila melanogaster insulators in cells with reduced chromatin-remodeling activities. We found that knockdown of NURF301 and ISWI, key components of the nucleosome-remodeling factor (NURF), synergistically disrupted the enhancer-blocking function of Fab7 and SF1 and augmented the function of Fab8. Mutations in Nurf301/Ebx and Iswi also affected the function of these boundaries in vivo. We further show that ISWI was localized on the endogenous Fab7 and Fab8 insulators and that NURF knockdown resulted in a marked increase in the nucleosome occupancy at these insulator sites. In contrast to the effect of NURF knockdown, reduction in dMi-2, the ATPase component of the Drosophila nucleosome-remodeling and deacetylation (NuRD) complex, augmented Fab7 and suppressed Fab8. Our results provide the first evidence that higher-order chromatin organization influences the enhancer-blocking activity of chromatin boundaries. In particular, the NURF and NuRD nucleosome-remodeling complexes may regulate Hox expression by modulating the function of boundaries in these complexes. The unique responses by different classes of boundaries to changes in the chromatin environment may be indicative of their distinct mechanisms of action, which may influence their placement in the genome and selection during evolution.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (8) ◽  
pp. e1007442 ◽  
Author(s):  
Olga Kyrchanova ◽  
Amina Kurbidaeva ◽  
Marat Sabirov ◽  
Nikolay Postika ◽  
Daniel Wolle ◽  
...  

2019 ◽  
Author(s):  
Louis-Valentin Méteignier ◽  
Cécile Lecampion ◽  
Florent Velay ◽  
Cécile Vriet ◽  
Laura Dimnet ◽  
...  

AbstractThe organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically downregulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some TE loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine (SAM) synthase MAT3, which is required for H3K9me2 deposition. Topoisomerase VI promotes MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a mechanistic insight into the essential role of Topoisomerase VI in the delimitation of chromatin domains.


2015 ◽  
Vol 35 (21) ◽  
pp. 3739-3752 ◽  
Author(s):  
Daniel Wolle ◽  
Fabienne Cleard ◽  
Tsutomu Aoki ◽  
Girish Deshpande ◽  
Paul Schedl ◽  
...  

Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. TheFab-7boundary from theDrosophilabithorax complex (BX-C) is required for the parasegment-specific expression of theAbd-Bgene. We have used a replacement strategy to identify sequences that are necessary and sufficient forFab-7boundary function in the BX-C.Fab-7boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds toFab-7sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the threeFab-7LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC bindingin vitroinactivate theFab-7boundary in the BX-C.


2018 ◽  
Author(s):  
Olga Kyrchanova ◽  
Amina Kurbidaeva ◽  
Marat Sabirov ◽  
Nikolay Postika ◽  
Daniel Wolle ◽  
...  

AbstractExpression of the three Bithorax complex homeotic genes is orchestrated by nine parasegment-specific regulatory domains. Autonomy of each domain is conferred by boundary elements (insulators). Here, we have used an in situ replacement strategy to reanalyze the sequences required for the functioning of one of the best-characterized fly boundaries, Fab-7. It was initially identified by a deletion, Fab-71, that transformed parasegment (PS) 11 into a duplicate copy of PS12. Fab-71 deleted four nuclease hypersensitive sites, HS*, HS1, HS2, and HS3, located in between the iab-6 and iab-7 regulatory domains. Transgene and P-element excision experiments mapped the boundary to HS*+HS1+HS2, while HS3 was shown to be the iab-7 Polycomb response element (PRE). Recent replacement experiments showed that HS1 is both necessary and sufficient for boundary activity when HS3 is also presented in the replacement construct. Surprisingly, while HS1+HS3 combination has full boundary activity, we discovered that HS1 alone has only minimal function. Moreover, when combined with HS3, only the distal half of HS1, dHS1, is needed. A ∼1,000 kD multiprotein complex containing the GAF protein, called the LBC, binds to the dHS1 sequence and we show that mutations in dHS1 that disrupt LBC binding in nuclear extracts eliminate boundary activity and GAF binding in vivo. HS3 has binding sites for GAF and Pho proteins that are required for PRE silencing. In contrast, HS3 boundary activity only requires the GAF binding sites. LBC binding with HS3 in nuclear extracts, and GAF association in vivo depend upon the HS3 GAF sites, but not the Pho sites. Consistent with a role for the LBC in HS3 boundary activity, the boundary function of the dHS1+HS3mPho combination is lost when the flies are heterozygous for a mutation in the GAF gene. Taken together, these results reveal a novel function for the iab-7 PREs in chromosome architecture.Author SummaryPolycomb group proteins (PcG) are important epigenetic regulators of developmental genes in all higher eukaryotes. In Drosophila, these proteins are bound to specific regulatory DNA elements called Polycomb group Response Elements (PREs). PcG support proper patterns of homeotic gene expression throughout development. Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins, including GAF and Pho. In the regulatory region of the bithorax complex (BX-C), the boundary/insulator elements organize the autonomous regulatory domains, and their active or repressed states are regulated by PREs. Here, we studied the domain organization of the Fab-7 boundary and the neighboring PRE, which separate the iab-6 and iab-7 domains involved in transcription of the Abd-B gene. It was previously thought that PRE recruits PcG proteins that inhibit activation of the iab-7 enhancers in the inappropriate domains. However, here we found that PRE contributes to boundary activity and in combination with a key 242 bp Fab-7 region (dHS1) can form a completely functional boundary. Late Boundary Complex (LBC) binds not only to dHS1 but also to PRE and is required for the boundary activity of both elements. At the same time, mutations of Pho binding sites strongly diminish recruiting of PcG but do not considerably affect boundary function, suggesting that these activities can be separated in PRE.


Wetlands ◽  
2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Alba Cuena-Lombraña ◽  
Mauro Fois ◽  
Annalena Cogoni ◽  
Gianluigi Bacchetta

AbstractPlants are key elements of wetlands due to their evolutionary strategies for coping with life in a water-saturated environment, providing the basis for supporting nearly all wetland biota and habitat structure for other taxonomic groups. Sardinia, the second largest island of the Mediterranean Basin, hosts a great variety of wetlands, of which 16 are included in eight Ramsar sites. The 119 hydro- and hygrophilous vascular plant taxa from Sardinia represent the 42.6% and 37.9% of the number estimated for Italy and Europe, respectively. Moreover, around 30% of Sardinia’s bryological flora, which is made up of 498 taxa, is present in temporary ponds. An overview at regional scale considering algae is not available, to our knowledge, even though several specific studies have contributed to their knowledge. In order to find the most investigated research themes and wetland types, identify knowledge gaps and suggest recommendations for further research, we present a first attempt to outline the work that has been hitherto done on plants in lentic habitats in Sardinia. Three plant groups (algae, bryophytes and vascular plants), and five research themes (conservation, ecology, inventory, palaeobotany and taxonomy) were considered. After a literature review, we retained 202 papers published from 1960 to 2019. We found that studies on vascular plants, as plant group, were disproportionately more numerous, and inventories and ecology were the most investigated research themes. Although efforts have recently been made to fill these long-lasting gaps, there is a need for updating the existing information through innovative methods and integrative approaches.


Sign in / Sign up

Export Citation Format

Share Document