scholarly journals Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids

Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 975-987 ◽  
Author(s):  
Dmitrij Dedukh ◽  
Zuzana Majtánová ◽  
Anatolie Marta ◽  
Martin Pšenička ◽  
Jan Kotusz ◽  
...  

Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.

2019 ◽  
Author(s):  
Dmitrij Dedukh ◽  
Zuzana Majtánová ◽  
Anatolie Marta ◽  
Martin Pšenička ◽  
Jan Kotusz ◽  
...  

AbstractFormation of species generally occurs in a continuum from potentially intermixing populations to independent entities isolated from other species by pre- and postzygotic barriers. Especially the establishment of hybrid sterility (HS) is a hallmark of speciation, which usually emerges at different rates between hybrid sexes. However, although HS is frequently observed, the underlying molecular mechanisms remain poorly understood. Here we report that speciation proceeds through a previously unnoticed stage at which gene flow is completely interrupted on side of both hybrid’s sexes, although only male hybrids are sterile, while female fertility is rescued due to a particular gametogenetic deviation leading to the formation of clonal gametes. Specifically, analysis of gametogenetic pathways in hybrids between fish species Cobitis elongatoides and C. taenia revealed that male HS resulted from extensive asynapses and crossover reduction among elongatoides-taenia chromosomal pairs followed by apoptosis. By contrast, hybrid females exhibited premeiotic genome endoreplication which ensured proper formation of bivalents between identical chromosomal copies. This deviation ultimately restored fertility in females but since it simultaneously leads to the production of unreduced clonal gametes, it restricts interspecific gene flow thereby directly contributing to speciation. In conclusion, our data demonstrate that the emergence of asexuality may remedy HS in a sex-specific manner and is intermingled with the speciation process. Although gametogenetic mechanisms employed by asexual animals and plants have rarely been scrutinized, available evidence suggests that premeiotic endoreplication is relatively widespread. This suggests that observed link between HS and clonality may have general validity in taxa able of asexual reproduction.Author’s summarySpecies are fundamental evolutionary units that presumably evolve in a continuum from potentially intermixing populations to independent entities isolated from other species by pre- and postzygotic barriers. Especially the establishment of hybrid sterility (HS) is a hallmark of speciation, which usually emerges at different rates between hybrid sexes. However, although HS is frequently observed, the underlying molecular mechanisms remain poorly understood. Here we report the existence of a previously unnoticed stage of speciation at which gene flow is completely interrupted, although only male hybrids are sterile, while female fertility is rescued due to a particular gametogenetic deviation leading to formation of clonal gametes. Specifically, HS resulted from extensive asynapses in male gonads, but in females the hybridization provoked premeiotic endoreplication which rescued chromosome pairing and fertility. Simultaneously, this meiotic deviation caused clonal transmission of maternal genome, thereby effectively restricting the interspeficic gene flow. Our results emphasize that emergence of clonality is a type of hybrid incompatibility that is intermingled with the formation of biological species and may remedy hybrid sterility in a sex-specific manner.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5317 ◽  
Author(s):  
Jan W. Arntzen ◽  
Nazan Üzüm ◽  
Maja D. Ajduković ◽  
Ana Ivanović ◽  
Ben Wielstra

Relationships between phylogenetic relatedness, hybrid zone spatial structure, the amount of interspecific gene flow and population demography were investigated, with the newt genusTriturusas a model system. In earlier work, a bimodal hybrid zone of two distantly related species combined low interspecific gene flow with hybrid sterility and heterosis was documented. Apart from that, a suite of unimodal hybrid zones in closely relatedTriturusshowed more or less extensive introgressive hybridization with no evidence for heterosis. We here report on population demography and interspecific gene flow in twoTriturusspecies (T. macedonicusandT. ivanbureschiin Serbia). These are two that are moderately related, engage in a heterogeneous uni-/bimodal hybrid zone and hence represent an intermediate situation. This study used 13 diagnostic nuclear genetic markers in a population at the species contact zone. This showed that all individuals were hybrids, with no parentals detected. Age, size and longevity and the estimated growth curves are not exceeding that of the parental species, so that we conclude the absence of heterosis inT. macedonicus–T. ivanbureschi. Observations across the genus support the hypothesis that fertile hybrids allocate resources to reproduction and infertile hybrids allocate resources to growth. SeveralTriturusspecies hybrid zones not yet studied allow the testing of this hypothesis.


2021 ◽  
Vol 22 (2) ◽  
pp. 953
Author(s):  
Angela Maria Gonella-Diaza ◽  
Everton Lopes ◽  
Kauê Ribeiro da Silva ◽  
Ricardo Perecin Nociti ◽  
Gabriella Mamede Andrade ◽  
...  

Information on molecular mechanisms through which sex-steroids regulate oviductal function to support early embryo development is lacking. Here, we hypothesized that the periovulatory endocrine milieu affects the miRNA processing machinery and miRNA expression in bovine oviductal tissues. Growth of the preovulatory follicle was controlled to obtain cows that ovulated a small follicle (SF) and subsequently bore a small corpus luteum (CL; SF-SCL) or a large follicle (LF) and large CL (LF-LCL). These groups differed in the periovulatory plasmatic sex-steroid’s concentrations. Ampulla and isthmus samples were collected on day four of the estrous cycle. Abundance of DROSHA, DICER1, and AGO4 transcripts was greater in the ampulla than the isthmus. In the ampulla, transcription of these genes was greater for the SF-SCL group, while the opposite was observed in the isthmus. The expression of the 88 most abundant miRNAs and 14 miRNAs in the ampulla and 34 miRNAs in isthmus were differentially expressed between LF-LCL and SF-SCL groups. Integration of transcriptomic and miRNA data and molecular pathways enrichment showed that important pathways were inhibited in the SF-SCL group due to miRNA control. In conclusion, the endocrine milieu affects the miRNA expression in the bovine oviduct in a region-specific manner.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 489
Author(s):  
Bartosz Łabiszak ◽  
Witold Wachowiak

Speciation mechanisms, including the role of interspecific gene flow and introgression in the emergence of new species, are the major focus of evolutionary studies. Inference of taxonomic relationship between closely related species may be challenged by past hybridization events, but at the same time, it may provide new knowledge about mechanisms responsible for the maintenance of species integrity despite interspecific gene flow. Here, using nucleotide sequence variation and utilizing a coalescent modeling framework, we tested the role of hybridization and introgression in the evolutionary history of closely related pine taxa from the Pinus mugo complex and P. sylvestris. We compared the patterns of polymorphism and divergence between taxa and found a great overlap of neutral variation within the P. mugo complex. Our phylogeny reconstruction indicated multiple instances of reticulation events in the past, suggesting an important role of interspecific gene flow in the species divergence. The best-fitting model revealed P. mugo and P. uncinata as sister species with basal P. uliginosa and asymmetric migration between all investigated species after their divergence. The magnitude of interspecies gene flow differed greatly, and it was consistently stronger from representatives of P. mugo complex to P. sylvestris than in the opposite direction. The results indicate the prominent role of reticulation evolution in those forest trees and provide a genetic framework to study species integrity maintained by selection and local adaptation.


2019 ◽  
Vol 29 (23) ◽  
pp. 4152 ◽  
Author(s):  
Shyam Gopalakrishnan ◽  
Mikkel-Holger S. Sinding ◽  
Jazmín Ramos-Madrigal ◽  
Jonas Niemann ◽  
Jose A. Samaniego Castruita ◽  
...  

Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 2966-2972 ◽  
Author(s):  
Hartmut Geiger ◽  
Jarrod M. True ◽  
Gerald de Haan ◽  
Gary Van Zant

Abstract The molecular mechanisms that regulate self-renewal and differentiation of very primitive hematopoietic stem and progenitor cells in vivo are still poorly understood. Despite the clinical relevance, even less is known about the mechanisms that regulate these cells in old animals. In a forward genetic approach, using quantitative trait linkage analysis in the mouse BXD recombinant inbred set, this study identified loci that regulate the genetic variation in the size of primitive hematopoietic cell compartments of young and old C57BL6 and DBA/2 animals. Linked loci were confirmed through the generation and analysis of congenic animals. In addition, a comparative linkage analysis revealed that the number of primitive hematopoietic cells and hematopoietic stem cells are regulated in a stage-specific and an age-specific manner.


2014 ◽  
Vol 42 (2) ◽  
pp. 364-376 ◽  
Author(s):  
A. Jonathan Shaw ◽  
Blanka Shaw ◽  
Hans K. Stenøien ◽  
G. Karen Golinski ◽  
Kristian Hassel ◽  
...  

2021 ◽  
Vol 17 (3) ◽  
pp. e1009368
Author(s):  
Juan Carlos De la Concepcion ◽  
Josephine H. R. Maidment ◽  
Apinya Longya ◽  
Gui Xiao ◽  
Marina Franceschetti ◽  
...  

Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.


2021 ◽  
Vol 9 ◽  
Author(s):  
María Isabel Chacón-Sánchez ◽  
Jaime Martínez-Castillo ◽  
Jorge Duitama ◽  
Daniel G. Debouck

The genus Phaseolus, native to the Americas, is composed of more than eighty wild species, five of which were domesticated in pre-Columbian times. Since the beginning of domestication events in this genus, ample opportunities for gene flow with wild relatives have existed. The present work reviews the extent of gene flow in the genus Phaseolus in primary and secondary areas of domestication with the aim of illustrating how this evolutionary force may have conditioned ecological fitness and the widespread adoption of cultigens. We focus on the biological bases of gene flow in the genus Phaseolus from a spatial and time perspective, the dynamics of wild-weedy-crop complexes in the common bean and the Lima bean, the two most important domesticated species of the genus, and the usefulness of genomic tools to detect inter and intraspecific introgression events. In this review we discuss the reproductive strategies of several Phaseolus species, the factors that may favor outcrossing rates and evidence suggesting that interspecific gene flow may increase ecological fitness of wild populations. We also show that wild-weedy-crop complexes generate genetic diversity over which farmers are able to select and expand their cultigens outside primary areas of domestication. Ultimately, we argue that more studies are needed on the reproductive biology of the genus Phaseolus since for most species breeding systems are largely unknown. We also argue that there is an urgent need to preserve wild-weedy-crop complexes and characterize the genetic diversity generated by them, in particular the genome-wide effects of introgressions and their value for breeding programs. Recent technological advances in genomics, coupled with agronomic characterizations, may make a large contribution.


2020 ◽  
Author(s):  
Ryan Ard ◽  
Jean-Christian Maillet ◽  
Elias Daher ◽  
Michael Phan ◽  
Radoslav Zinoviev ◽  
...  

AbstractCells can switch between Rac1, lamellipodia-based and RhoA, blebbing-based migration modes but the molecular mechanisms regulating this choice are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation. Instead, DGKζ functions as a scaffold that stimulates RhoA release by enhancing RhoGDI phosphorylation by protein kinase Cα (PKCα). Here, PKCα-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification increased binding of the DGKζ C-terminus to the α1-syntrophin PDZ domain. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the Rho-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells required the PDZ-binding motif, suggesting syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism involving DGKζ phosphorylation by PKCα that favours RhoA-driven blebbing over Rac1-driven lamellipodia formation and macropinocytosis. These findings provide a mechanistic basis for the effect of PKCα signaling on Rho GTPase activity and suggest PKCα activity plays a role in the interconversion between Rac1 and RhoA signaling that underlies different migration modes.


Sign in / Sign up

Export Citation Format

Share Document