scholarly journals The External Amino Acid Signaling Pathway Promotes Activation of Stp1 and Uga35/Dal81 Transcription Factors for Induction of the AGP1 Gene in Saccharomyces cerevisiae

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1727-1739 ◽  
Author(s):  
F. Abdel-Sater
Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1727-1739 ◽  
Author(s):  
Fadi Abdel-Sater ◽  
Ismaïl Iraqui ◽  
Antonio Urrestarazu ◽  
Bruno André

Abstract Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1—but not Stp2—plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene’s upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UASAA element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UASAA itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5′-GATA-3′ sequences, to amplify the positive effect of UASAA. Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway.


2010 ◽  
Vol 30 (13) ◽  
pp. 3299-3309 ◽  
Author(s):  
Thorsten Pfirrmann ◽  
Stijn Heessen ◽  
Deike J. Omnus ◽  
Claes Andréasson ◽  
Per O. Ljungdahl

ABSTRACT Extracellular amino acids induce the yeast SPS sensor to endoproteolytically cleave transcription factors Stp1 and Stp2 in a process termed receptor-activated proteolysis (RAP). Ssy5, the activating endoprotease, is synthesized with a large N-terminal prodomain and a C-terminal chymotrypsin-like catalytic (Cat) domain. During biogenesis, Ssy5 cleaves itself and the prodomain and Cat domain remain associated, forming an inactive primed protease. Here we show that the prodomain is a potent inhibitor of Cat domain activity and that its inactivation is a requisite for RAP. Accordingly, amino acid-induced signals trigger proteasome-dependent degradation of the prodomain. A mutation that stabilizes the prodomain prevents Stp1 processing, whereas destabilizing mutations lead to constitutive RAP-independent Stp1 processing. We fused a conditional degron to the prodomain to synthetically reprogram the amino acid-responsive SPS signaling pathway, placing it under temperature control. Our results define a regulatory mechanism that is novel for eukaryotic proteases functioning within cells.


1999 ◽  
Vol 19 (2) ◽  
pp. 989-1001 ◽  
Author(s):  
Ismaïl Iraqui ◽  
Stephan Vissers ◽  
Florent Bernard ◽  
Johan-Owen de Craene ◽  
Eckhard Boles ◽  
...  

ABSTRACT The SSY1 gene of Saccharomyces cerevisiaeencodes a member of a large family of amino acid permeases. Compared to the 17 other proteins of this family, however, Ssy1p displays unusual structural features reminiscent of those distinguishing the Snf3p and Rgt2p glucose sensors from the other proteins of the sugar transporter family. We show here that SSY1 is required for transcriptional induction, in response to multiple amino acids, of theAGP1 gene encoding a low-affinity, broad-specificity amino acid permease. Total noninduction of the AGP1 gene in thessy1Δ mutant is not due to impaired incorporation of inducing amino acids. Conversely, AGP1 is strongly induced by tryptophan in a mutant strain largely deficient in tryptophan uptake, but it remains unexpressed in a mutant that accumulates high levels of tryptophan endogenously. Induction of AGP1requires Uga35p(Dal81p/DurLp), a transcription factor of the Cys6-Zn2 family previously shown to participate in several nitrogen induction pathways. Induction of AGP1by amino acids also requires Grr1p, the F-box protein of the SCFGrr1 ubiquitin-protein ligase complex also required for transduction of the glucose signal generated by the Snf3p and Rgt2p glucose sensors. Systematic analysis of amino acid permease genes showed that Ssy1p is involved in transcriptional induction of at least five genes in addition to AGP1. Our results show that the amino acid permease homologue Ssy1p is a sensor of external amino acids, coupling availability of amino acids to transcriptional events. The essential role of Grr1p in this amino acid signaling pathway lends further support to the hypothesis that this protein participates in integrating nutrient availability with the cell cycle.


2009 ◽  
Vol 285 (2) ◽  
pp. 855-865 ◽  
Author(s):  
Kevin Wielemans ◽  
Cathy Jean ◽  
Stéphan Vissers ◽  
Bruno André

2004 ◽  
Vol 24 (20) ◽  
pp. 8994-9005 ◽  
Author(s):  
Nathalie Spielewoy ◽  
Karin Flick ◽  
Tatyana I. Kalashnikova ◽  
John R. Walker ◽  
Curt Wittenberg

ABSTRACT SCFGrr1, one of several members of the SCF family of E3 ubiquitin ligases in budding Saccharomyces cerevisiae, is required for both regulation of the cell cycle and nutritionally controlled transcription. In addition to its role in degradation of Gic2 and the CDK targets Cln1 and Cln2, Grr1 is also required for induction of glucose- and amino acid-regulated genes. Induction of HXT genes by glucose requires the Grr1-dependent degradation of Mth1. We show that Mth1 is ubiquitinated in vivo and degraded via the proteasome. Furthermore, phosphorylated Mth1, targeted by the casein kinases Yck1/2, binds to Grr1. That binding depends upon the Grr1 leucine-rich repeat (LRR) domain but not upon the F-box or basic residues within the LRR that are required for recognition of Cln2 and Gic2. Those observations extend to a large number of Grr1-dependent genes, some targets of the amino acid-regulated SPS signaling system, which are properly regulated in the absence of those basic LRR residues. Finally, we show that regulation of the SPS targets requires the Yck1/2 casein kinases. We propose that casein kinase I plays a similar role in both nutritional signaling pathways by phosphorylating pathway components and targeting them for ubiquitination by SCFGrr1.


2003 ◽  
Vol 2 (5) ◽  
pp. 876-885 ◽  
Author(s):  
Oliver Valerius ◽  
Cornelia Brendel ◽  
Claudia Wagner ◽  
Sven Krappmann ◽  
Fritz Thoma ◽  
...  

ABSTRACT ARO4 and HIS7 are two tandemly orientated genes of Saccharomyces cerevisiae that are transcribed into the same direction. The ARO4 terminator and the HIS7 promoter regions are sensitive to Micrococcus nuclease (Mnase) and separated by a positioned nucleosome. The HIS7 promoter is target for the transcription factors Gcn4p and Bas1p/Bas2p that activate its transcription upon amino acid starvation and purine limitation, respectively. Activation of the HIS7 gene by Gcn4p overexpression but not by Bas1p/Bas2p releases an ordered nucleosome distribution to yield increased Mnase sensitivity throughout the intergenic region. This remodeling is SNF2 dependent but mostly GCN5 independent. Accordingly, SNF2 is necessary for the Gcn4p-mediated transcriptional activation of the HIS7 gene. GCN5 is required for activation upon adenine limitation by Bas1p/Bas2p. Our data suggest that activation of HIS7 transcription by Gcn4p and Bas1p/Bas2p is supported by a nucleosome position-dependent and -independent mechanism, respectively. Whereas Gcn4p activation causes Swi/Snf-mediated remodeling of the nucleosomal architecture at the HIS7 promoter, the Bas1p/Bas2p complex presumably activates in combination with Gcn5p-dependent histone acetylation.


2006 ◽  
Vol 6 (2) ◽  
pp. 291-301 ◽  
Author(s):  
Mikhail Martchenko ◽  
Anastasia Levitin ◽  
Malcolm Whiteway

ABSTRACT Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C6 zinc cluster (Gal4p) families; C. albicans has C. albicans Gcn4p (CaGcn4p) and CaGal4p with DNA binding domains highly similar to their S. cerevisiae counterparts. Deletion analysis of the CaGcn4p protein shows that the N′ terminus is needed for transcriptional activation; an 81-amino-acid region is critical for this function, and this domain can be coupled to a lexA DNA binding module to provide transcription-activating function in a heterologous reporter system. Deletion analysis of the C. albicans Gal4p identifies a C-terminal 73-amino-acid-long transcription-activating domain that also can be transferred to a heterologous reporter construct to direct transcriptional activation. These two transcriptional activation regions show no sequence similarity to the respective domains in their S. cerevisiae homologs, and the two C. albicans transcription-activating domains themselves show little similarity.


2004 ◽  
Vol 24 (22) ◽  
pp. 9771-9785 ◽  
Author(s):  
Fadi Abdel-Sater ◽  
Mohamed El Bakkoury ◽  
Antonio Urrestarazu ◽  
Stephan Vissers ◽  
Bruno André

ABSTRACT Saccharomyces cerevisiae cells possess a plasma membrane sensor able to detect the presence of extracellular amino acids and then to activate a signaling pathway leading to transcriptional induction of multiple genes, e.g., AGP1, encoding an amino acid permease. This sensing function requires the permease-like Ssy1 and associated Ptr3 and Ssy5 proteins, all essential to activation, by endoproteolytic processing, of the membrane-bound Stp1 transcription factor. The SCFGrr1 ubiquitin-ligase complex is also essential to AGP1 induction, but its exact role in the amino acid signaling pathway remains unclear. Here we show that Stp1 undergoes casein kinase I-dependent phosphorylation. In the yck mutant lacking this kinase, Stp1 is not cleaved and AGP1 is not induced in response to amino acids. Furthermore, we provide evidence that Ssy5 is the endoprotease responsible for Stp1 processing. Ssy5 is significantly similar to serine proteases, its self-processing is a prerequisite for Stp1 cleavage, and its overexpression causes inducer-independent Stp1 cleavage and high-level AGP1 transcription. We further show that Stp1 processing also requires the SCFGrr1 complex but is insensitive to proteasome inhibition. However, Stp1 processing does not require SCFGrr1, Ssy1, or Ptr3 when Ssy5 is overproduced. Finally, we describe the properties of a particular ptr3 mutant that suggest that Ptr3 acts with Ssy1 in amino acid detection and signal initiation. We propose that Ssy1 and Ptr3 form the core components of the amino acid sensor. Upon detection of external amino acids, Ssy1-Ptr3 likely allows—in a manner dependent on SCFGrr1—the Ssy5 endoprotease to gain access to and to cleave Stp1, this requiring prior phosphorylation of Stp1 by casein kinase I.


2005 ◽  
Vol 4 (6) ◽  
pp. 1116-1124 ◽  
Author(s):  
Peter Poulsen ◽  
Boqian Wu ◽  
Richard F. Gaber ◽  
Morten C. Kielland-Brandt

ABSTRACT Amino acids in the environment of Saccharomyces cerevisiae can transcriptionally activate a third of the amino acid permease genes through a signal that originates from the interaction between the extracellular amino acids and an integral plasma membrane protein, Ssy1p. Two plasma membrane-associated proteins, Ptr3p and Ssy5p, participate in the sensing, which results in cleavage of the transcription factors Stp1p and Stp2p, removing 10 kDa of the N terminus of each of them. This confers the transcription factors with the ability to gain access to the nucleus and activate transcription of amino acid permease genes. To extend our understanding of the role of Ptr3p and Ssy5p in this amino acid sensing process, we have isolated constitutive gain-of-function mutants in these two components by using a genetic screening in which potassium uptake is made dependent on amino acid signaling. Mutants which exhibit inducer-independent processing of Stp1p and activation of the amino acid permease gene AGP1 were obtained. For each component of the SPS complex, constitutive signaling by a mutant allele depended on the presence of wild-type alleles of the other two components. Despite the signaling in the absence of inducer, the processing of Stp1p was more complete in the presence of inducer. Dose response assays showed that the median effective concentration for Stp1p processing in the mutant cells was decreased; i.e., a lower inducer concentration is needed for signaling in the mutant cells. These results suggest that the three sensor components interact intimately in a complex rather than in separate reactions and support the notion that the three components function as a complex.


Sign in / Sign up

Export Citation Format

Share Document