scholarly journals Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells

2018 ◽  
Vol 59 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Dongpu Dai ◽  
Jian Yang ◽  
Chenze Zhao ◽  
Huandong Wu ◽  
Jie Ding ◽  
...  
2015 ◽  
Vol 403 (1-2) ◽  
pp. 267-276 ◽  
Author(s):  
Yan Liu ◽  
Shenglin Zhang ◽  
Dechun Su ◽  
Jinqiu Liu ◽  
Yunpeng Cheng ◽  
...  

2020 ◽  
Vol 22 (2) ◽  
pp. 1090-1090
Author(s):  
Kai Lu ◽  
Guanglei Chang ◽  
Lin Ye ◽  
Peng Zhang ◽  
Yong Li ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 696
Author(s):  
Danqiong Huang ◽  
Wenfu Liu ◽  
Anguo Li ◽  
Chaogang Wang ◽  
Zhangli Hu

Haematococcus pluvialis is widely distributed in the world and well known as the richest natural source of astaxanthin that is a strong antioxidant with excellent commercial value. The pathway of astaxanthin biosynthesis in H. pluvialis has been documented as an enzymatic reaction. Several enzymes have been reported, but their isoforms or homologs have not been investigated genome-wide. To better understand the astaxanthin biosynthesis pathway in H. pluvialis, eight candidates of the geranylgeranyl pyrophosphate synthase gene (HpGGPPS) predicted from Iso-seq data were isolated in this study. The length of coding region of these candidates varied from 960 bp to 1272 bp, composing of 7–9 exons. The putative amino acids of all candidates composed the signature domain of GGPPS gene. However, the motifs in the domain region are varied, indicating different bio-functions. Phylogenetic analysis revealed eight candidates can be clustered into three groups. Only two candidates in Group1 encode the synthase participating in the astaxanthin formation. The yield of astaxanthin from these two candidates, 7.1 mg/g (DW) and 6.5 mg/g (DW) respectively, is significant higher than that from CrtE (2.4 mg/g DW), a GGPPS gene from Pantoea ananatis. This study provides a potential productive pathway for astaxanthin synthesis.


2017 ◽  
Vol 44 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Qianhui Li ◽  
Yin Xiang ◽  
Yu Chen ◽  
Yong Tang ◽  
Yachen Zhang

Background/Aims: Excessive reactive oxygen species (ROS) disturb the physiology of H9c2 cells, which is regarded as a major cause of H9c2 cardiomyocyte apoptosis. Ginsenoside Rg1 is the main active extract of ginseng, which has important antioxidant properties in various cell models. This project investigated the role of ginsenoside Rg1 in hypoxia/reoxygenation (H/R)-induced oxidative stress injury in cultured H9c2 cells to reveal the underlying signaling pathways. Methods: H9c2 cells were pretreated with ginsenoside Rg1 for 12 h before exposure to H/R. In the absence or presence of Nrf2siRNA, HO-1 inhibitor (ZnPP-IX), and inhibitors of the MAPK pathway (SB203580, PD98059, SP600125), H9c2 cells were subjected to H/R with Rg1 treatment. The effects and mechanisms of H/R-induced cardiomyocyte injury were measured. Results: Ginsenoside Rg1 treatment suppressed H/R-induced apoptosis and caspase-3 activation. Ginsenoside Rg1 treatment decreased ROS production and mitochondrial membrane depolarization by elevating the intracellular antioxidant capacity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH). Furthermore, ginsenoside Rg1 stimulation appeared to result in nuclear translocation of NF-E2-related factor 2 (Nrf2), along with enhanced expression of the downstream target gene heme oxygenase-1 (HO-1) in a dose-dependent manner. However, ginsenoside Rg1-mediated cardioprotection was abolished by Nrf2-siRNA and HO-1 inhibitor. H/R treatment increased the levels of phosphorylated c-Jun N-terminal kinases (p-JNK), which was dramatically attenuated by ginsenoside Rg1 and SP600125 (a specific JNK inhibitor). Conclusion: These observations indicate that ginsenoside Rg1 activates the Nrf2/HO-1 axis and inhibits the JNK pathway in H9c2 cells to protect against oxidative stress.


2019 ◽  
Vol 73 (9) ◽  
pp. 259
Author(s):  
Md Sayed Ali Sheikh ◽  
A. Alduraywish ◽  
U. Salma ◽  
Wu Zhichao ◽  
Ke Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document