INFLUENCE OF INPUT ELEMENT PARAMETERS ON AERODYNAMIC CHARACTERISTICS OF MAIN MINE FANS IN SHAFTS WITH AXIAL FANS

Author(s):  
I. V. Lugin
2020 ◽  
Vol 2 ◽  
pp. 72-81
Author(s):  
Pavel V. Kosykh

Present-day achievements in the field of strength calculation and structural optimization allow creating main mine fans with higher tip speed than in currently used machines. The paper considers the features of calculating the aerodynamic diagrams of mine reverse axial fans with a tip speed over 200 m/s. It is shown that at such speed it is possible to obtain high-flow fans with significantly smaller dimensions than their existing counterparts. Aerodynamic diagrams with high reverse characteristics (flow rate of more than 0.7 from the direct mode for the network of the same aerodynamic characteristics as in direct mode) are developed. The aerodynamic characteristics of the developed diagrams are calculated in the ANSYS software package. It is shown that an increase in the tip speed contributes to an increase in reverse properties of fans compared to less high-speed machines designed for the same total pressure. The limiting values of axial velocity coefficient and pressure coefficient are determined, at which it is possible to obtain a fan without an inlet guide vane, with a monotonic dependence of total pressure on flow rate.


Author(s):  
Bo Luo ◽  
Wuli Chu ◽  
Wei Dong ◽  
Xiangyi Chen

Axial fans are widely used in modern industry and new regulations and stringent environmental concerns are prompting manufacturer to design efficient low-noise axial fans. This paper is focused on improving the aerodynamic performances and reducing the tonal noise at BPF and its harmonics by the optimum choice of lean-swept blade and the stacking line for the low-speed axial fan. The aerodynamic characteristics of the axial fan with a shroud are explored by CFD with ANASYS CFX. A hybrid method, SST turbulence model for flow and FW-H equation for acoustics, is chosen to predict the radiated noise. The accuracy and reliability of predicted aerodynamic and aeroacoustics results are verified by comparing both computation and experimental data. A number of modified blades with different leaned angle, swept angle and the stacking lines are modeled and analyzed, and the investigation into the optimum choice of lean-swept blade and the stacking line is conducted according to aerodynamic performances and tonal noise. Q-criterion which can visualize the major flow disturbances is applied for the purpose of identification of acoustic sources. The turbulent flow structures on the leading edge, tip and suction side of the blade are main noise sources. An optimal modification is determined through the analysis of the aerodynamic performances and noise, which is to achieve the desired performances by blade sweep and lean and adjusting the stacking line. The results show that aerodynamic and acoustic performances of the optimized fan are better than that of the original fan and the improvement is more obvious to change the stacking line with centre of gravity compare to blade sweep and lean for the low-speed axial fan.


2013 ◽  
Vol 44 (1) ◽  
pp. 111-127
Author(s):  
Sergey Mikhailovich Zadonsky ◽  
Alexander Petrovich Kosykh ◽  
Garry Grantovich Nersesov ◽  
Iraida Fedorovna Chelysheva ◽  
Sergey Valer'evich Chernov ◽  
...  

2015 ◽  
Vol 46 (7) ◽  
pp. 619-629
Author(s):  
Albert Vasilievich Petrov ◽  
Vladimir Fedorovich Tretyakov

2007 ◽  
Vol 55 (641) ◽  
pp. 304-308
Author(s):  
Yusuke Maru ◽  
Hiroaki Kobayashi ◽  
Motoyuki Hongoh ◽  
Tetsuya Sato

Sign in / Sign up

Export Citation Format

Share Document