scholarly journals DEVELOPMENT OF AERODYNAMIC DIAGRAMS OF HIGH-LOADED REVERSE AXIAL FANS

2020 ◽  
Vol 2 ◽  
pp. 72-81
Author(s):  
Pavel V. Kosykh

Present-day achievements in the field of strength calculation and structural optimization allow creating main mine fans with higher tip speed than in currently used machines. The paper considers the features of calculating the aerodynamic diagrams of mine reverse axial fans with a tip speed over 200 m/s. It is shown that at such speed it is possible to obtain high-flow fans with significantly smaller dimensions than their existing counterparts. Aerodynamic diagrams with high reverse characteristics (flow rate of more than 0.7 from the direct mode for the network of the same aerodynamic characteristics as in direct mode) are developed. The aerodynamic characteristics of the developed diagrams are calculated in the ANSYS software package. It is shown that an increase in the tip speed contributes to an increase in reverse properties of fans compared to less high-speed machines designed for the same total pressure. The limiting values of axial velocity coefficient and pressure coefficient are determined, at which it is possible to obtain a fan without an inlet guide vane, with a monotonic dependence of total pressure on flow rate.

Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Jan Klausmann

On the basis of experimental results the new design of a Variable Inlet Guide Vane (VIGV), as can be used for the control and regulation in multishaft compressors, is presented. Main goal of this investigation is a significant increase of the operating range and a reduction of the total pressure loss compared to a currently used basic design. For both designs 2D-cascades were build for detailed measurements in the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion at the Universität der Bundeswehr München. The basic design exhibits a symmetric profile with only one segment. In contrast to that the new VIGV design consists of two symmetric vane segments which are arranged pivotable to each other. This provides the advantage of a symmetric profile for a fully opened VIGV associated with a low-loss level. For guidance of the flow, both vane segments can be rotated. Hence, the turning of the flow is split onto two segments. This avoids a huge flow separation on the suction side for high turning angles (Δβ > 30°) which is linked with a strong and abrupt loss increase. Due to the design, the new VIGV exhibits a gap between the two vane segments. Results with opened and sealed gap are presented and discussed. Using a sealing between the segments, a reduction of the profile loss could be detected for all investigated operating conditions. Even without a sealing in the gap, the “low-loss working range” is significantly increased. In addition, it is depicted that the presented results are valid for varying inflow velocities. This broadens the usability of the outcomes. Concluding, it is shown that all aims are achieved. Using the new VIGV design with sealing the low-loss working range can almost be doubled (Δβ > 55°) and the total pressure loss decreases in every working condition compared to the basic design.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Zhenlin Li ◽  
Xin Zhou ◽  
Zizhe Wang

In order to effectively improve hydraulic performance of centrifugal pump on off-conditions, the hydraulic design of inlet guide vane (IGV) was completed by adopting two dimensional theory in-house code based on one kind of IS series of centrifugal pump, which can achieve pre-whirl regulation of centrifugal pump. During design process the trailing edge of vane is assumed as equal velocity moment condition, and the distribution of vane setting angle along meridional streamline is also given as a quartic function firstly, the camber line is then drawn by point-by-point integration method and thickened at both sides along circumferential direction. With local vortex dynamics diagnosis theory, the optimal improvement of vane space shape can be finished by adjusting the design parameters of vane setting angle distribution coefficient ap. The full flow passage numerical simulations of centrifugal pump with IGV device are completed to analyze the influence of pre-whirl regulation on hydraulic performance of centrifugal pump under various pre-whirl angles. The results show that the pre-whirl regulation can improve the hydraulic performance of centrifugal pump on off-conditions. Under the positive pre-whirl regulation conditions, the best efficient point shift to small flow rate zone, and under the negative pre-whirl regulation conditions it moves to large flow rate zone. Compared with the pump without IGV device at the same flow rate condition of 0.8Q (Q the design flow rate), the hydraulic efficiency of centrifugal pump with IGV device improves obviously and reaches up to 1.43%. Meanwhile compared with that installed with the straight vanes designed based on the traditional theory, the inner flow field of centrifugal pump with the designed vanes improves and the overall hydraulic efficiency of centrifugal pump is somewhat increased.


Author(s):  
Ernst Lindner

To enhance the performance of the inlet guide vane and the annular duct of a jet engine, a detailed investigation of annular cascades with two different types of turbine guide vane rows is made. The first one is a leaned guide vane with an aspect ratio of two and a half and a transition duct ahead of the vane. To avoid the losses associated to the decelerating transition duct an alternative vane is designed and investigated with the same inlet and exit conditions. In this case the chord of the vane is increased to the effect that the vane begins immediately at the enterance of the diverging annulus and so a continuously accelerated flow is achieved. To maintain a good performance for this configuration a bowed-type vane with an aspect ratio of one is designed. The aim of the investigation is to obtain detailed informations on the secondary flow behaviour with particular regard to the development of the total pressure losses and the streamwise vorticity of the vortices inside and behind the blade rows. In the first step a three-dimensional, structured, explicit finite-volume flow-solver with a k–ε turbulence model is validated against the measurements, which were made in cross-sections behind the blades. Having proved that the numerical results are very close to the experimental ones, the secondary flow behaviour inside and behind the blade rows is analysed in the second step. By calculating the streamwise vorticity from the numerical results the formation of horse-shoe vortex, passage-vortex and the trailing edge vortex shed is investigated. The differences of the vortical motion and the formation of the total pressure losses between the two configurations of turbine guide vane rows are discussed.


Mechanik ◽  
2018 ◽  
Vol 91 (7) ◽  
pp. 606-608
Author(s):  
Stanisław Wrzesień ◽  
Michał Frant ◽  
Maciej Majcher

The paper presents an analysis and comparison of basic characteristics of axial fans, both analytically and numerically. Such characteristics are: the characteristics of the total pressure, power and total efficiency as a function of the volumetric flow rate. The presented results showed significant quantitative and qualitative differences in the characteristics obtained by two methods. The usefulness of numerical methods in relation to the results of the initial analytical project was confirmed.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


Author(s):  
I. Kassens ◽  
M. Rautenberg

In a centrifugal compressor adjustable inlet guide vanes (IGV) in front of the impeller are used to regulate the pressure ratio and the mass flow. The stationary measurement of the velocity profile in front of the impeller with different angles of the IGV displays shock losses at the inlet edge of blade of the impeller. In the partial-load region (e.g. partial-load efficiency) the radial distribution of the flow influences considerably the performance of the impeller. The tested compressor consists of an adjustable IGV with straight vanes, a shrouded impeller and a vaneless, parallel diffuser. In the first measurement location, behind the IGV, total pressure, static pressure and flow angle were measured with a 5-hole cylinder probe. In the second measurement location, in front of the impeller, the measurement of the total pressure was carried out with a Kiel probe and the flow angle with a Cobra probe accordingly the static wall pressure was measured. Taking into consideration the fundamental thermodynamical equations it was possible to determine the velocity profiles because of the measured distributions of the flow angle in these two measurement locations. For different angles of the IGV and with various mass flows the distributions of the deflection defect behind the IGV are described. Starting with the measured distributions of the flow in front of the impeller the flow angles at the impeller inlet are calculated and the distributions of the incidence angle at the impeller inlet are figured out.


Author(s):  
W. Sanz ◽  
P. Pieringer ◽  
W. Baumgartner ◽  
W. Edelbauer ◽  
C. Pilz ◽  
...  

In this work the flow through a pre-swirl turbine guide vane was calculated using two different flow solvers and compared with total pressure measurements in a downstream plane. The flow is transonic and strongly influenced by secondary flows. A special feature of this cascade is that the gap height at the hub is varying. Flow separation and leakage vortex flow dominate the loss generation. The flow is simulated using an in-house CFD code as well as the commercially available code FLUENT. The flow is carefully analysed and the loss generation mechanisms are presented in detail. The comparison with the measured total pressure distribution shows that the overall loss scheme is well predicted by both codes, but there are still large deficiencies in the quantitative results. The commercial code FLUENT is closer to the measurement data. Further investigations are performed to find out the differences between both codes.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1372
Author(s):  
Mingming Zhang ◽  
Anping Hou

In order to explore the inducing factors and mechanism of the non-synchronous vibration, the flow field structure and its formation mechanism in the non-synchronous vibration state of a high speed turbocompressor are discussed in this paper, based on the fluid–structure interaction method. The predicted frequencies fBV (4.4EO), fAR (9.6EO) in the field have a good correspondence with the experimental data, which verify the reliability and accuracy of the numerical method. The results indicate that, under a deviation in the adjustment of inlet guide vane (IGV), the disturbances of pressure in the tip diffuse upstream and downstream, and maintain the corresponding relationship with the non-synchronous vibration frequency of the blade. An instability flow that developed at the tip region of 90% span emerged due to interactions among the incoming main flow, the axial separation backflow, and the tip leakage vortices. The separation vortices in the blade passage mixed up with the tip leakage flow reverse at the trailing edge of blade tip, presenting a spiral vortex structure which flows upstream to the leading edge of the adjacent blade. The disturbances of the spiral vortexes emerge to rotate at 54.5% of the rotor speed in the same rotating direction as a modal oscillation. The blade vibration in the turbocompressor is found to be related to the unsteadiness of the tip flow. The large pressure oscillation caused by the movement of the spiral vortex is regarded as the one of the main drivers for the non-synchronous vibration for the present turbocompressor, besides the deviation in the adjustment of IGV.


1998 ◽  
Vol 4 (4) ◽  
pp. 217-231
Author(s):  
Heinz E. Gallus

Detailed results of unsteady flow measurements in a stator-rotor-stator assembly of an axial-flow turbine as well as an inlet guide vane-rotor-stator formation of an axial-flow compressor are presented in this paper.The measurements include the time-dependent 3-D velocity vector fields in the axial gaps between the blade rows by means of triple-hot wire-technique, furthermore the total pressure field downstream of the blade rows by means of semiconductor total pressure probes and the unsteady flow field determination in the rotor passages by LDV-technique. Special semiconductor pressure measurements along the casing all over the rotor tip clearance permit detailed discussion of the rotor tip clearance flows.The conclusion of the measured data provides a new and very instructive view of the physics of the unsteady blade-row interaction in axial-flow turbines and compressors.


Sign in / Sign up

Export Citation Format

Share Document