Energy absorption characteristics of thin-walled steel tube filled with paper scraps

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5985-6002
Author(s):  
Peng Cheng ◽  
Qingchun Wang ◽  
Shi Ke

The specific energy absorption of a thin-walled tube can be improved by filler. This study examined the potential use of a cheaper biomass filler, paper scraps, to enhance the energy absorption characteristics of the structure while reducing its cost, compared to that with a traditional filler such as foam material. Quasi-static crushing tests and finite element simulations were performed by using the explicit non-linear finite element software LS-DYNA to determine the improvements to the mean crushing force and specific energy absorption of the steel tube when filled with different densities of paper scraps. The mean crushing force and specific energy absorption of the empty tube, the paper scraps, and thin-walled tube filled with paper scraps were determined, and corresponding numerical simulations were performed. The simulation and test results showed that the impact performance of tube filled with paper scraps was greatly improved when paper scraps density was 0.35 g/cm3. By optimizing paper scraps filling structure, a new structure that could further enhance the specific energy absorption was obtained. The optimal scheme could increase the specific energy absorption of Q345 steel tube by 11.35%.

2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


Author(s):  
Alireza Ahmadi ◽  
Masoud Asgari

Thin-walled structures are of much interest as energy absorption devices for their great crashworthiness and also low weight. Conical tubes are favorable structures because unlike most other geometries, they are also useful in oblique impacts. This paper investigated the effect of corrugations on energy absorption characteristics of conical tubes under quasi-static axial and oblique loadings. To do so, conical tubes with different corrugation geometries were analyzed using the finite element explicit code and the effects of corrugations on initial peak crushing force and specific energy absorption were studied. The finite element model was validated by experimental quasi-static compression tests on simple and corrugated aluminum cylinders. An efficient analytical solution for EA during axial loading was also derived and compared with the FEM solution. The crushing stableness was analyzed using the undulation of the load-carrying capacity parameter and it was shown that corrugations made collapsing mode, more predictable and controllable. The findings have shown that corrugated conical tubes have much better energy absorption characteristics compared with their non-corrugated counterparts. It was also discovered that during oblique loadings, introducing corrugations can significantly increase the specific energy absorption compared with simple cones.


2018 ◽  
Vol 22 (8) ◽  
pp. 2735-2767
Author(s):  
Ali Bigdeli ◽  
Mohammad Damghani Nouri

In this study, aluminum thin-walled cylindrical absorbers for crashworthiness are investigated to introduce a novel system with better energy absorption and crushing characteristics under quasi-static axial compressive loading. The inside of the thin-walled cylinders is meshed with a square welded from vertices to the thin-walled cylinder. Here, the response surface method, which is one of the design of experiments techniques has been used to examine the effect of the parameters on energy absorption, initial peak crushing force, specific energy absorption per unit mass and energy absorption per length. The variables of thickness (t), height (h) and length of square (l) of the thin-walled cylinder were considered in three levels and initial peak crushing force, specific energy absorption per unit mass and energy absorption per length were selected as response. The specimens were analyzed under a quasi-static compressive test at a constant speed of 10 mm/min. Subsequently, for further investigation, the experimental results were compared with those obtained from the finite element simulation using Abaqus software, which indicated desirable accuracy. To decrease the solution time in this numerical analysis, the speed was set at 0.5 m/s. Finally, the experimental results were compared with the simulation ones, which showed acceptable compatibility. Further, there are the equations obtained from the multi-objective optimization testing design. The results indicated a linear relationship of thickness with responses, nonlinear relationship of height with responses, linear relationship of length of square with initial peak crushing force, and nonlinear relationship with specific energy absorption per unit mass and energy absorption per length.


2020 ◽  
Vol 54 (27) ◽  
pp. 4253-4268
Author(s):  
Mou Haolei ◽  
Xie Jiang ◽  
Zou Jun ◽  
Feng Zhenyu

To research the failure of carbon fiber-reinforced composite laminated specimens, the tensile tests and compressive tests were conducted for [90]16 and [0]16 specimens, and the shear tests were conducted for [±45]4s specimens, and the microscopic failure mechanisms were observed by scanning electron microscopy. To research the failure and energy absorption of different thin-walled structures with different layups, the quasi-static axial crushing tests were conducted for [±45/0/0/90/0]s and [0/90]3s circular tubes, [0/90]3s and [±45]3s square tubes, [0/90]4s and [±45]4s sinusoidal specimens, and the internal failure were further investigated by 3D X-ray scan. Based on the load-displacement curves, the energy absorptions were evaluated and compared according to specific energy absorption and peak crushing force, and the relationships between failure modes and specific energy absorption, peak crushing force were further researched. The results show that the macroscopic failure modes are the collective results of varieties of microscopic failure mechanisms, such as fiber fracture, matrix deformation and cracking, interlamination and intralamination cracks, cracks propagation, etc. The [±45/0/0/90/0]s circular tube shows the transverse shearing failure mode with high specific energy absorption. The [±45]3s square tube and [±45]3s sinusoidal specimen show the local buckling failure mode with low specific energy absorption. The [0/90]4s sinusoidal specimen, [0/90]3s circular tube, and [0/90]3s square tube show the lamina bending failure mode with medium specific energy absorption. The failure mode of thin-walled structure can be changed by reasonable layups design, and the energy absorption can further be improved.


2019 ◽  
Vol 36 (8) ◽  
pp. 2588-2611
Author(s):  
Shutian Liu ◽  
Xueshan Ding ◽  
Zeqi Tong

Purpose This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the tube parameters on energy absorption. Design/methodology/approach In this work, the energy absorption properties of the thin-walled square tube were analyzed by theoretical, numerical and experimental approach. The numerical results are obtained based on the finite element method. The explicit formulation for predicting the mean crushing force of the tube with lateral piecewise variable thickness was derived based on Super Folding Element method. The limitation of the prediction formulation was analyzed by numerical calculation. The numerical calculation was also used to compare the energy absorption between the tube with lateral piecewise variable thickness and other tubes, and to carry out the parametric analysis. Findings Results indicate that the thin-walled tube with lateral piecewise variable thickness has higher energy absorption properties than the uniform thickness tubes and the tubes with lateral linear variable thickness. The thickness of the corner is the key factor for the energy absorption of the tubes. The thickness of the non-corner region is the secondary factor. Increasing the corner thickness and decreasing the non-corner thickness can make the energy absorption improved. It is also found that the prediction formulation of the mean crushing force given in this paper can quickly and accurately predict the energy absorption of the square tube. Originality/value The outcome of the present research provides a design idea to improve the energy absorption of thin-walled tube by designing cross-section thickness and gives an explicit formulation for predicting the mean crushing force quickly and accurately.


2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Felix Dionisius ◽  
Jos Istiyanto ◽  
Tito Endramawan ◽  
Andri Andri

Crashworthiness is an ability of a vehicle structure in order to reduce injury when occurred in collision. Crashworthiness criteria are peak force (Fmax), specific energy absorption (SEA), and crush force efficiency (CFE). The part of structure of vehicle in crashworthiness is front rail which is generally tube as thin walled structure. The aim was to know the best design in thin walled square tube as specimen by variance of crush initiator which arranged holes 3 mm of diameter in shaping stripe with 4 holes, then added graded holes in parallelogram to trigon. This research used compression experiment method under quasi static loading with 30 mm/minute of actuator velocity. Optimum design was done by using Multi Criteria Decision Making (MCDM) with Simple Additive Weighting (SAW) modelling. This research presents that specimen with trigon of crush initiator is the best design with 0.98 of decision score in which crashworthiness criteria for peak force, specific energy absorption and crush force efficiency are 19193.81 N; 5100.93 J/kg; and 46.44%.


Author(s):  
D. Yesuraj ◽  
M.S.P.P. Vallavaraayan ◽  
S. Selvaraj

The purpose of this work is to find the specific energy absorption (SEA) of a steel tube using ABAQUS/CAE V6.10. Crashworthiness of a structure is characterised by the absorbed more amount of energy while the structure is subjected to an impact. A material structure should safeguard the occupants during an impact. The specimen geometry, processing conditions, and testing speed are the dependent parameters of energy absorption. It aims to determine the generalized mathematical model to evaluate the SEA and also find the parameter that is most likely affects SEA. Simulations are also carried out in ABAQUS/CAE to validate the developed numerical analysis.


Author(s):  
Degao Hou ◽  
Yan Chen ◽  
Jiayao Ma ◽  
Zhong You

Thin-walled tubes are widely used as energy absorption devices in automobiles, designed to protect the costly structures and people inside during an impact event through plastic deformation. They show excellent performance under axial loading in terms of weight efficiency, stroke distance and total energy absorption, but also have the disadvantage that the crushing force is not uniform during deformation process, especially with the existence of a high initial peak force. Recently, pattern design on tubular structures has received increasing attention. It has been found that, if the surface of a tube is pre-folded according to an origami pattern, the collapse mode of the tube can be altered, leading to changes in energy absorption performance. In this paper, we present a series of origami patterned tubes with a kite-shape pattern that is constructed by joining two pieces of Miura-ori. First of all, the geometry of the pattern is presented. We develop a theoretical model to predict the energy absorption associated with the axial crushing of the patterned tubes and derive a mathematical formula to calculate the mean crushing force accordingly. Secondly, a family of origami tubes with various profiles are designed, and their performances subjected to quasi-static axial crushing are numerically investigated. A parametric study is also conducted to establish the relationship between the pre-folded angle of the pattern and the initial peak force as well as the mean crushing force. Numerical results show that introducing patterns to thin-walled tubes offers three advantages in comparison with conventional tubes, i.e., a lower initial peak force, a more uniform crushing load, and a stable and repeatable collapse mode. A 36.0% increase in specific energy absorption and 67.2% reduction in initial peak force is achieved in the optimum case. The new origami patterned tubes show great promise as energy absorption devices.


2019 ◽  
Vol 11 (1) ◽  
pp. 41-68 ◽  
Author(s):  
Chukwuemeke William Isaac

The dynamic oblique crushing of circular thin-walled tubes with the presence of non-propagating crack was investigated numerically. The material considered was strain rate sensitive with crack located at the distal end of the tube. Major crashworthiness parameters were obtained and the analysis of the structural response for idealized and finite element crushed thin-walled tubes was also carried out. The study shows that crack initiation on energy absorbing tubes increase their crushing force efficiency under oblique impact, decrease their crushing force efficiency under axial impact and reduce their crashworthiness performance such as the energy absorption capacity and specific energy absorption under axial and oblique impact. Results of the crashworthiness parameters, deformation modes, damage morphology, stress–strain relations, absorption energy characteristics and crushing force-displacement history were obtained. Furthermore, the numerical study reveals both the desirable and undesirable consequence of crack on the overall crashworthiness performance of energy absorbing circular thin-walled tubes.


Sign in / Sign up

Export Citation Format

Share Document