Axial Crushing of Thin-Walled Tubes With Kite-Shape Pattern

Author(s):  
Degao Hou ◽  
Yan Chen ◽  
Jiayao Ma ◽  
Zhong You

Thin-walled tubes are widely used as energy absorption devices in automobiles, designed to protect the costly structures and people inside during an impact event through plastic deformation. They show excellent performance under axial loading in terms of weight efficiency, stroke distance and total energy absorption, but also have the disadvantage that the crushing force is not uniform during deformation process, especially with the existence of a high initial peak force. Recently, pattern design on tubular structures has received increasing attention. It has been found that, if the surface of a tube is pre-folded according to an origami pattern, the collapse mode of the tube can be altered, leading to changes in energy absorption performance. In this paper, we present a series of origami patterned tubes with a kite-shape pattern that is constructed by joining two pieces of Miura-ori. First of all, the geometry of the pattern is presented. We develop a theoretical model to predict the energy absorption associated with the axial crushing of the patterned tubes and derive a mathematical formula to calculate the mean crushing force accordingly. Secondly, a family of origami tubes with various profiles are designed, and their performances subjected to quasi-static axial crushing are numerically investigated. A parametric study is also conducted to establish the relationship between the pre-folded angle of the pattern and the initial peak force as well as the mean crushing force. Numerical results show that introducing patterns to thin-walled tubes offers three advantages in comparison with conventional tubes, i.e., a lower initial peak force, a more uniform crushing load, and a stable and repeatable collapse mode. A 36.0% increase in specific energy absorption and 67.2% reduction in initial peak force is achieved in the optimum case. The new origami patterned tubes show great promise as energy absorption devices.

Author(s):  
Jiayao Ma ◽  
Zhong You

Crash boxes in automobiles are often made from thin-walled tubes. They are designed to absorb energy when subjected to axial crushing. In this paper we present a novel crash box known as the origami crash box. It is produced by pre-folding the surface of a thin-walled tube according to a developable origami pattern. The pre-folded surface serves both as a type of geometric imperfection to lower the initial peak force, and as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. Numerical simulation of quasi-static axial crushing of the origami crash box has shown that a new collapse mode deemed the completed diamond mode can be triggered in tubes with square, rectangular, and polygonal cross sections and tapered shapes, leading to both a substantial gain in overall energy absorption, while at the same time, a reduction in initial peak force.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


Author(s):  
X Wang ◽  
G Lu

Based on the classical Alexander solution for the axial collapse of bare metal tubes, a theoretical model is presented to predict the mean crushing force of arbitrarily fibre-reinforced metal tubes with a ring collapse mode. The derived mean crushing force and length of the local folding wave are more reasonable and are in better agreement with the experiments than previously obtained. The effect of wrapping direction of the reinforcing fibres is studied. This model for predicting the static mean crushing force can be extended for the dynamic mean crushing force of fibre-reinforced metal tubes under axial impact load.


2019 ◽  
Vol 10 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Jiayao Ma ◽  
Huaping Dai ◽  
Mengyan Shi ◽  
Lin Yuan ◽  
Yan Chen ◽  
...  

Abstract. Thin-walled tubes are widely used as energy absorption devices for their low cost and high manufacturability. Introduction of the origami technique enables the tube to follow a pre-determined failure mode and to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of the origami crash box under quasi-static axial crushing. Both experimental and numerical results show that the origami pattern develops a diamond-shaped mode, bringing a reduction in initial peak force and a significant increase in energy absorption compared to the conventional hexagonal tube. The sensitivity of its energy absorption performance to various parameters is studied, and it is shown to achieve 68.29 % increase in the specific energy absorption and 13.91 % reduction in the initial peak force in the optimal case. Furthermore, an analytical solution is presented for the energy absorption, which achieves reasonable agreement with the numerical results.


2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5985-6002
Author(s):  
Peng Cheng ◽  
Qingchun Wang ◽  
Shi Ke

The specific energy absorption of a thin-walled tube can be improved by filler. This study examined the potential use of a cheaper biomass filler, paper scraps, to enhance the energy absorption characteristics of the structure while reducing its cost, compared to that with a traditional filler such as foam material. Quasi-static crushing tests and finite element simulations were performed by using the explicit non-linear finite element software LS-DYNA to determine the improvements to the mean crushing force and specific energy absorption of the steel tube when filled with different densities of paper scraps. The mean crushing force and specific energy absorption of the empty tube, the paper scraps, and thin-walled tube filled with paper scraps were determined, and corresponding numerical simulations were performed. The simulation and test results showed that the impact performance of tube filled with paper scraps was greatly improved when paper scraps density was 0.35 g/cm3. By optimizing paper scraps filling structure, a new structure that could further enhance the specific energy absorption was obtained. The optimal scheme could increase the specific energy absorption of Q345 steel tube by 11.35%.


2018 ◽  
Vol 22 (8) ◽  
pp. 2735-2767
Author(s):  
Ali Bigdeli ◽  
Mohammad Damghani Nouri

In this study, aluminum thin-walled cylindrical absorbers for crashworthiness are investigated to introduce a novel system with better energy absorption and crushing characteristics under quasi-static axial compressive loading. The inside of the thin-walled cylinders is meshed with a square welded from vertices to the thin-walled cylinder. Here, the response surface method, which is one of the design of experiments techniques has been used to examine the effect of the parameters on energy absorption, initial peak crushing force, specific energy absorption per unit mass and energy absorption per length. The variables of thickness (t), height (h) and length of square (l) of the thin-walled cylinder were considered in three levels and initial peak crushing force, specific energy absorption per unit mass and energy absorption per length were selected as response. The specimens were analyzed under a quasi-static compressive test at a constant speed of 10 mm/min. Subsequently, for further investigation, the experimental results were compared with those obtained from the finite element simulation using Abaqus software, which indicated desirable accuracy. To decrease the solution time in this numerical analysis, the speed was set at 0.5 m/s. Finally, the experimental results were compared with the simulation ones, which showed acceptable compatibility. Further, there are the equations obtained from the multi-objective optimization testing design. The results indicated a linear relationship of thickness with responses, nonlinear relationship of height with responses, linear relationship of length of square with initial peak crushing force, and nonlinear relationship with specific energy absorption per unit mass and energy absorption per length.


Author(s):  
John Sherman ◽  
Wen Zhang ◽  
Jun Xu

AbstractEnergy absorption performance has been a long-pursued research topic in designing desired materials and structures subject to external dynamic loading. Inspired by natural bio-structures, herein, we develop both numerical and theoretical models to analyze the energy absorption behaviors of Weaire, Floret, and Kagome-shaped thin-walled structures. We demonstrate that these bio-inspired structures possess superior energy absorption capabilities compared to the traditional thin-walled structures, with the specific energy absorption about 44% higher than the traditional honeycomb. The developed mechanical model captures the fundamental characteristics of the bio-inspired honeycomb, and the mean crushing force in all three structures is accurately predicted. Results indicate that although the basic energy absorption and deformation mode remain the same, varied geometry design and the corresponding material distribution can further boost the energy absorption of the structure, providing a much broader design space for the next-generation impact energy absorption structures and systems.


2014 ◽  
Vol 606 ◽  
pp. 181-185 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Arun Kumar Kananasan ◽  
Mohd Radzi Mohamed Yunus ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali

An experimental investigation was conducted to compare the crush characteristics and energy absorption capacity of circular and square tubes with located through-hole crush initiator. Circular through-holes were fabricated at three different configurations based on location into steel tubes which had a length of 200 mm. Furthermore, two different side configurations along the tube were considered for introducing the crush initiators. The results found that adding crush initiator onto the tubes were effectively reduced the initial peak force of a thin-walled circular and square tubes under axial quasi-static loading. The peak crush force was reduced within a range 3-10% and 5-16% for circular and square tubes respectively when compared with corresponding tubes without crush initiator. Moreover, the energy absorption capacity of the tubes was independent with the incorporation of through-hole crush initiators. However, the energy absorption of circular and square tubes were slightly decreases when compared with the tubes fabricated four sided crush initiation and tubes without crush initiator. Overall, the effect of location and number of crush initiation proved significantly influences the initial peak forces while maintain the energy absorbed.


2019 ◽  
Vol 36 (8) ◽  
pp. 2588-2611
Author(s):  
Shutian Liu ◽  
Xueshan Ding ◽  
Zeqi Tong

Purpose This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the tube parameters on energy absorption. Design/methodology/approach In this work, the energy absorption properties of the thin-walled square tube were analyzed by theoretical, numerical and experimental approach. The numerical results are obtained based on the finite element method. The explicit formulation for predicting the mean crushing force of the tube with lateral piecewise variable thickness was derived based on Super Folding Element method. The limitation of the prediction formulation was analyzed by numerical calculation. The numerical calculation was also used to compare the energy absorption between the tube with lateral piecewise variable thickness and other tubes, and to carry out the parametric analysis. Findings Results indicate that the thin-walled tube with lateral piecewise variable thickness has higher energy absorption properties than the uniform thickness tubes and the tubes with lateral linear variable thickness. The thickness of the corner is the key factor for the energy absorption of the tubes. The thickness of the non-corner region is the secondary factor. Increasing the corner thickness and decreasing the non-corner thickness can make the energy absorption improved. It is also found that the prediction formulation of the mean crushing force given in this paper can quickly and accurately predict the energy absorption of the square tube. Originality/value The outcome of the present research provides a design idea to improve the energy absorption of thin-walled tube by designing cross-section thickness and gives an explicit formulation for predicting the mean crushing force quickly and accurately.


Sign in / Sign up

Export Citation Format

Share Document