scholarly journals Effects of Metal Chlorides on the Solubility of Lignin in the Black Liquor of Prehydrolysis Kraft Pulping

BioResources ◽  
2014 ◽  
Vol 9 (3) ◽  
Author(s):  
Liang He ◽  
Qiujuan Liu ◽  
Youyue Song ◽  
Yulin Deng
TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 9-19 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART

Brownstock washing is a complex, dynamic process in which dirty wash water or weak black liquor (dissolved organic and inorganic material obtained from the pulp cooking process) is separated from pulp fibers. The use of material balance techniques is of great importance to identify potential problems and determine how well the system is operating. The kraft pulping industry was the first known to combine pulp washing with the recovery of materials used and produced in the wood cooking process. The motivation behind materials recovery is economic, and more recently, environmentally driven. The chemicals used in the kraft process are expensive as compared to those used in the sulfite process. For the kraft process to be economically viable, it is imperative that a very high percentage of the cooking chemicals be recovered. To reach such high efficiency, a variety of washing systems and monitoring parameters have been developed. Antifoam additives and processing aids have also played an important role in increasing washing effectiveness. Antifoam materials help attain washing effectiveness by preventing entrapped air from forming in the system, which allows for an easier, unimpeded flow of filtrate through the screens and washers.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (5) ◽  
pp. 287-293 ◽  
Author(s):  
JANNATUN NAYEEM ◽  
M. SARWAR JAHAN ◽  
RAZIA SULTANA POPY ◽  
M. NASHIR UDDIN ◽  
M.A. QUAIYYUM

Jute cutting, jute caddis, and cutting-caddis mixtures were prehydrolyzed by varying time and temperature to get about 90% prehydrolyzed yield. At the conditions of 170°C for 60 min of prehydrolysis, the yield for 100% jute cutting was 76.3%, while the same for jute caddis was only 67.9%. But with prehydrolysis at 150°C for 60 min, the yield was 90% for jute cutting, where 49.94% of original pentosan was dissolved and prehydrolysis of jute caddis at 140°C in 60 min yielded 86.4% solid residue. Jute cutting-caddis mixed prehydrolysis was done at 140°C for 30 min and yielded 92% solid residue for 50:50 cutting-caddis mixtures, where pentosan dissolution was only 29%. Prehydrolyzed jute cutting, jute caddis, and cutting-caddis mixtures were subsequently kraft cooked. Pulp yield was only 40.9% for 100% jute cutting prehydrolyzed at 170°C for 60 min, which was 10.9% lower than the prehydrolysis at 140°C. For jute cutting-caddis mixed prehydrolysis at 140°C for 45 min followed by kraft cooking, pulp yield decreased by 3.3% from the 100% cutting to 50% caddis in the mixture, but 75% caddis in the mixture decreased pulp yield by 6.7%. The kappa number 50:50 cutting-caddis mixture was only 11.3. Pulp bleachability improved with increasing jute cutting proportion in the cutting-caddis mixture pulp.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2887
Author(s):  
Kena Li ◽  
Jens Prothmann ◽  
Margareta Sandahl ◽  
Sara Blomberg ◽  
Charlotta Turner ◽  
...  

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170–210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


Author(s):  
Р. V. Lukanin

This article contains results of exergic analysis of kraft pulping flow chart. The results of exergic balances of main kraft pulping processes such as alkali recovery at recovery boilers, black liquor evaporation, chips cooking, lime decarbonation are considered in details in the article. The analysis of the process flow chart makes it possible to determine the bottlenecks in the use of heat energy and to substantiate principal lines for increasing energy efficiency of the processes under study. A main share of the exergy expended in the existing pulping process is due to alkali recovery in the recovery boiler and comprises 70% of the total exergy available in the system. A procedure of hydrothermal production of chemicals in the process of kraft pulping is studied. A schematic diagram and analysis of heat technique of the kraft pulping process which in fact consists of organic component removal from black liquor through its autoclave carbonation with flue gases releasing from lime kiln at the temperature 80-90 oC are given in the article. The removal of organic components under these conditions can reach 70 %. In the studied version the exergic efficiency ηe = 80 % is considerably higher than that of the flow chart existing for chemicals recovery which is equal to ηe = 48 %. This is the evidence of high energy efficiency of the method developed.


2011 ◽  
Vol 233-235 ◽  
pp. 1479-1484
Author(s):  
Ke Xin Hu ◽  
Guang Ming Zeng ◽  
Hai Chao Zhang

The possibilities of dissolving grade pulp production from reed were investigated in this paper. Two – stage prehydrolysis – kraft pulping and CEHA bleaching process of reed for preparation of dissolving grade pulp were studied in laboratory. The optimum cooking and bleaching conditions were found out. The mechanism and its kinetics of reed in prehydrolysis process were also discussed. The results showed that under the laboratory conditions the rate for removal of materials at about 175°C follow approximately a pseudo first order law with two distinct phrases: the bulk removal and the residual removal of the materials. The prehydrolysis-factor (P-factor) was established. The advantage of using P-factor is predict compensating adjustments in cooking time and/or temperature to give the same degree of pulping and to produce pulp with predetermined characteristics. It is found that three distinct delignification rate stages about 75% of pentosans and about 50% of lignin were removed. A CEHA four stage bleaching is used for dissolving grade pulp. Total chlorine charge in bleaching is 6% (to oven-dry pulp). The results show that all of the indices fitted the quality standards of dissolving grade pulp.


Sign in / Sign up

Export Citation Format

Share Document