scholarly journals Development of a reservoir type prolonged release system with felodipine via simplex methodology

2015 ◽  
Vol 89 (1) ◽  
pp. 128-136
Author(s):  
Rareș Iuliu Iovanov ◽  
Ioan Tomuță ◽  
Sorin Emilian Leucuța

Background and aims. Felodipine is a dihydropyridine calcium antagonist that presents good characteristics to be formulated as prolonged release preparations. The aim of the study was the formulation and in vitro characterization of a reservoir type prolonged release system with felodipine, over a 12 hours period using the Simplex method.Methods. The first step of the Simplex method was to study the influence of the granules coating method on the felodipine release. Furthermore the influence of the coating polymer type, the percent of the coating polymer and the percent of pore forming agent in the coating on the felodipine release were studied. Afterwards these two steps of the experimental design the percent of Surelease applied on the felodipine loaded granules and the percent of pore former in the polymeric coating formulation variables were studied. The in vitro dissolution of model drug was performed in phosphate buffer solution (pH 6.5) with 1% sodium lauryl sulfate. The released drug quantification was done using an HPLC method. The release kinetics of felodipine from the final granules was assessed using different mathematical models.Results. A 12 hours release was achieved using granules with the size between 315 – 500 µm coated with 45% Surelease with different pore former ratios in the coating via the top-spray method.Conclusion. We have prepared prolonged release coated granules with felodipine using a fluid bed system based on the Simplex method. The API from the studied final formulations was released over a 12 hours period and the release kinetics of the model drug substance from the optimized preparations fitted best the Higuchi and Peppas kinetic models. 

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1924 ◽  
Author(s):  
Vojtech Kundrat ◽  
Nicole Cernekova ◽  
Adriana Kovalcik ◽  
Vojtech Enev ◽  
Ivana Marova

Microbial poly(3-hydroxybutyrate) (PHB) has several advantages including its biocompatibility and ability to degrade in vivo and in vitro without toxic substances. This paper investigates the feasibility of electrospun PHB meshes serving as drug delivery systems. The morphology of the electrospun samples was modified by varying the concentration of PHB in solution and the solvent composition. Scanning electron microscopy of the electrospun PHB scaffolds revealed the formation of different morphologies including porous, filamentous/beaded and fiber structures. Levofloxacin was used as the model drug for incorporation into PHB electrospun meshes. The entrapment efficiency was found to be dependent on the viscosity of the PHB solution used for electrospinning and ranged from 14.4–81.8%. The incorporation of levofloxacin in electrospun meshes was confirmed by Fourier-transform infrared spectroscopy and UV-VIS spectroscopy. The effect of the morphology of the electrospun meshes on the levofloxacin release profile was screened in vitro in phosphate-buffered saline solution. Depending upon the morphology, the electrospun meshes released about 14–20% of levofloxacin during the first 24 h. The percentage of drug released after 13 days increased up to 32.4% and was similar for all tested morphologies. The antimicrobial efficiency of all tested samples independent of the morphology, was confirmed by agar diffusion testing.


RSC Advances ◽  
2019 ◽  
Vol 9 (28) ◽  
pp. 16167-16175 ◽  
Author(s):  
Shiping Zhan ◽  
Jingchang Wang ◽  
Weijing Wang ◽  
Liyun Cui ◽  
Qicheng Zhao

In this work, drug-loaded polymer microparticles were prepared by a supercritical solution impregnation (SSI) process with nitrendipine as the model drug and PLLA–PEG–PLLA as the drug carrier.


2010 ◽  
Vol 60 (4) ◽  
pp. 373-385 ◽  
Author(s):  
Tina Ukmar ◽  
Odon Planinšek

Ordered mesoporous silicates as matrices for controlled release of drugs Interest in and thereby also development of ordered mesoporous silicates as drug delivery devices have grown immensely over the past few years. On hand selected cases from the literature, the power of such systems as delivery devices has been established. Specifically, it is shown how it is possible to enhance the release kinetics of poorly soluble drugs by embedding them in mesoporous silicates. Further critical factors governing the structure and release of the model drug itraconazole incorporated in an SBA-15 matrix are briefly reviewed. The possibility of functionalizing the surface of mesoporous matrices also under harsher conditions offers a broad platform for the design of stimuli-responsive drug release, including pH responsive systems and systems which respond to the presence of specific ions, reducing agents, magnetic field or UV light, whose efficiency and biocompatibility has been established in vitro.


Author(s):  
SN Andreevskaya ◽  
TG Smirnova ◽  
EN Antonov ◽  
LN Chernousova ◽  
SE Bogorodsky ◽  
...  

Sustained-release drugs against tuberculosis are a promising approach to therapy since they positively affect patient compliance with long regimens, especially when it comes to the multidrug-resistant form of the disease. Conventional UV-visible spectroscopy does not work well with multicomponential culture media used for growing M. tuberculosis. The aim of this study was to develop a method for evaluating the kinetics of anti-tuberculosis drug released from bioresorbable polymeric carriers suitable for screening a wide range of encapsulated prolonged-release drugs and identifying the best performing candidate. While studying the growth dynamics of the laboratory susceptible strain M. tuberculosis H37Rv in the presence of different levofloxacin concentrations (from 0.03 to 0.4 μg/ml), we developed a model, which is essentially a set of 2 parallel experiments evaluating the kinetics of drug release into the culture medium. The results of these 2 experiments conducted on 3 encapsulated forms of levofloxacin loaded onto bioresorbable polymeric PLGA carriers (particles sized 50 μm and 100 μm and the matrix) revealed that release kinetics of the drug largely depended on the type of polymeric carrier. The best encapsulation of the antibiotic and its gradual release into the culture medium was observed for the matrix. All experiments were run in 3 replicates. The obtained data were analyzed using descriptive statistics.


Author(s):  
Baiyrkhanova A. ◽  
Ismailova A. ◽  
Botabekova T. ◽  
Enin E. ◽  
Semenova Y.

5-Fluorouracil (5-FU)-loaded chitosan (Ch) film for chemotherapy were prepared applying a superhydrophobic surfacebased encapsulation technology. The aim of this study was to develop polymeric film with glutaraldehyde (GA) of controlled drug delivery systems for 5 – fluorouracil (FU) as a model drug for the treatment of proliferative vitreoretinopathy. Polymer film of chitosan and polyvinyl alcohol (PVA in 75:25 ratios were prepared and treated with GA. FTIR spectra of 5-FU, Ch/5-FU and Ch/PVA film loaded 5-FU were studied. Physical characteristics such as thickness and swelling coefficient of the film were performed. The thermal of the Ch/PVA film was studied with thermogravimethric analysis. The drug loading efficiency, film size and chemical compositions of the film loaded drug were confirmed by UV–vis spectrophotometer and Fourier transform infrared spectroscopy. In vitro release kinetics of drug from the polymeric films was investigated to determine the drug release properties. In vivo study of PVR was showed the efficacy and no toxicity of this formulation. Further uses of the film loaded 5 - fluorouracil may provide an efficiency deliverable for ophthalmic administration.


2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.


2017 ◽  
Vol 19 (1) ◽  
pp. 470-480 ◽  
Author(s):  
Xiaojin Chen ◽  
Jun Yan ◽  
Shuying Yu ◽  
Pingping Wang

Sign in / Sign up

Export Citation Format

Share Document