hydrogel film
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 92)

H-INDEX

25
(FIVE YEARS 9)

2022 ◽  
Vol 18 (1) ◽  
pp. 122-132
Author(s):  
Hui Lu ◽  
Menglong Kong ◽  
Jun Jia ◽  
Nauman Rahim Khan ◽  
Hafiz Muhammad B ◽  
...  

Nano Letters ◽  
2021 ◽  
Author(s):  
Sen Meng ◽  
Xiang-Jun Zha ◽  
Can Wu ◽  
Xing Zhao ◽  
Ming-Bo Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (11) ◽  
pp. 164
Author(s):  
Young-Hyeon An ◽  
Su-Hwan Kim

In this study, we proposed a simple and easy method for fabricating a three-dimensional (3D) structure that can recapitulate the morphology of a tissue surface and deliver biological molecules into complex-shaped target tissues. To fabricate the 3D hydrogel film structure, we utilized a direct tissue casting method that can recapitulate tissue structure in micro-/macroscale using polydimethylsiloxane (PDMS). A replica 3D negative mold was manufactured by a polyurethane acrylate (PUA)-based master mold. Then, we poured the catechol-conjugated alginate (ALG-C) solution into the mold and evaporated it to form a dried film, followed by crosslinking the film using calcium chloride. The ALG-C hydrogel film had a tensile modulus of 725.2 ± 123.4 kPa and maintained over 95% of initial weight after 1 week without significant degradation. The ALG-C film captured over 4.5 times as much macromolecule (FITC-dextran) compared to alginate film (ALG). The cardiomyoblast cells exhibited high cell viability over 95% on ALG-C film. Moreover, the ALG-C film had about 70% of surface-bound lentivirus (1% in ALG film), which finally exhibited much higher viral transfection efficiency of GFP protein to C2C12 cells on the film than ALG film. In conclusion, we demonstrated a 3D film structure of biofunctionalized hydrogel for substrate-mediated drug delivery, and this approach could be utilized to recapitulate the complex-shaped tissues.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3671
Author(s):  
Saerom Park ◽  
Dahun Jung ◽  
Hyejin Do ◽  
Jonghyeon Yun ◽  
Dongjun Lee ◽  
...  

In this study, a laccase-mediator system (LMS) using a natural mediator was developed as a whitening agent for melanin decolorization. Seven natural mediators were used to replace synthetic mediators and successfully overcome the low redox potential of laccase and limited access of melanin to the active site of laccase. The melanin decolorization activity of laccases from Trametes versicolor (lacT) and Myceliophthora thermophila (lacM) was significantly enhanced using natural mediators including acetosyringone, syringaldehyde, and acetovanillone, which showed low cytotoxicity. The methoxy and ketone groups of natural mediators play an important role in melanin decolorization. The specificity constants of lacT and lacM for melanin decolorization were enhanced by 247 and 334, respectively, when acetosyringone was used as a mediator. LMS using lacM and acetosyringone could also decolorize the melanin present in the cellulose hydrogel film, which mimics the skin condition. Furthermore, LMS could decolorize not only synthetic eumelanin analogs prepared by the oxidation of tyrosine but also natural melanin produced by melanoma cells.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6414
Author(s):  
Hemalatha Murugaiah ◽  
Chow Lun Teh ◽  
Kai Chew Loh ◽  
Ahmad Ramli Mohamad Yahya ◽  
Nur Asshifa Md Noh ◽  
...  

Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs’ antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel’s properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.


Sign in / Sign up

Export Citation Format

Share Document