supercritical solution
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 27)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Zahra Rezvanjoo ◽  
Farhad Raofie

Aims: To propose a modified RESS method of herbal pharmaceutical extracts nanoparticle production. Background: A vast number of methods have been applied to water-insoluble pharmaceuticals to improve their solubility. Nanoparticle production of pharmaceuticals is considered as one of the high-speed ways to improve solubility. Objective: Supercritical CO2 was applied to extract Zingiber officinale Roscoe rhizome pharmaceutical. Then a modified RESS (rapid expansion of supercritical solution) method, called ESS (expansion of supercritical solution), was exerted to obtain NPs (nanoparticles) of the extracted pharmaceuticals. Methods: Initially, applying high pressure in supercritical CO2 contributed to the extract dissolution such that supercritical CO2 was saturated with the sample. Then by decreasing the pressure, an expansion occurred in the saturated medium. This expansion reduced the power of supercritical CO2 solvent and induced the sample nanoparticle nucleation in the needle valve. Conclusion: Unlike rapid expansion of supercritical solution methodology, in this technique, the initial and secondary pressures were permanently above the critical pressure to provide a gentle expansion, which contributes to the production of uniform and small particles. The obtained uniform NPs had a narrow size distribution. Consequently, ESS technique can be considered as an efficient technique for improving the solubility of hydrophobic pharmaceuticals such as [6]-gingerol.


2021 ◽  
pp. 2150037
Author(s):  
Zahra Rezvanjoo ◽  
Farhad Raofie

Terminalia chebula pharmaceuticals were extracted by using the supercritical fluid extraction (SFE) technique. Under the optimal conditions of 184 [Formula: see text]L modifier volume, 46 min dynamic extraction time, and 316 atm fluid pressure, the extraction procedure was optimized by central composite design. A modified rapid expansion of supercritical solution (RESS) technique, named expansion of the supercritical solution (ESS) was used to create the extracted pharmaceutical nanoparticles (NPs). In ESS, supercritical carbon dioxide (SC-CO[Formula: see text] was saturated with the extracts at high-pressure. Next, a pressure drop reduced the SC-CO2 solubility power in a way the extracts started to precipitate. In contrast to RESS, the pressure was permanently conserved above the critical pressure before and after depressurization. Therefore, the expansion process was gentle, which led to obtaining small and uniform particles. In the NP production process, the most adequate parameters were 360[Formula: see text]atm premier pressure, 120[Formula: see text]atm subsequent pressure, 25[Formula: see text]min equilibrium time, 30[Formula: see text]min sedimentation time, and [Formula: see text]C temperature. The average size of precipitated NPs was 41[Formula: see text]nm according to the results of field emission scanning electron microscopy analysis. The liquid chromatography-mass spectrometry evaluation demonstrated the presence of chebulinic and chebulagic acids in the extracted sample.


2020 ◽  
Vol 20 (12) ◽  
pp. 7583-7592
Author(s):  
Zhen Jiao ◽  
Sai Han ◽  
Weifang Wang ◽  
Jiangrui Cheng ◽  
Junying Song

Phospholipid liposomes are a promising drug delivery system. Catechin, a hydrophilic drug, was used to prepare catechin liposomes through a modified rapid expansion of supercritical solution (RESS) process in this study. The influences of operation parameters (i.e., temperature, pressure, and mass ratio of liposomal materials to catechin) on the properties of the prepared liposomes were determined using the single-factor analysis. The process was further optimized by response surface methodology (RSM) based on the Box-Behnken design (BBD). The encapsulation efficiency (EE) values can be adequately predicted using the obtained equation. The maximum EE value can reach 61.36±0.68% under the optimal parameters (i.e., the expansion temperature, pressure, and p/c mass ratio were 56.34 °C, 19.99 MPa, and 5.99, respectively). The prepared liposomes can effectively protect and stabilize the loaded catechin effectively. In addition, the in vitro release study showed the slow and sustained release behavior of the catechin liposomes.


Sign in / Sign up

Export Citation Format

Share Document