ophthalmic administration
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Margaret M. Ewald ◽  
Amy J. Rankin ◽  
Jessica M. Meekins ◽  
Geraldine Magnin ◽  
Butch KuKanich

Abstract OBJECTIVE To quantify plasma concentrations of prednisolone and dexamethasone (peripheral and jugular) and cortisol following topical ophthalmic application of 1% prednisolone acetate and 0.1% dexamethasone to healthy adult dogs. ANIMALS 12 purpose-bred Beagles. PROCEDURES Dogs received 1 drop of 1% prednisolone acetate (n = 6) or neomycin polymyxin B dexamethasone (ie, 0.1% dexamethasone; 6) ophthalmic suspension in both eyes every 6 hours for 14 days. Blood samples (peripheral and jugular) were collected on days 0, 1, 7, and 14 and analyzed for plasma prednisolone and dexamethasone concentrations. Plasma cortisol concentrations were measured at the beginning of the study and following topical drug administration. RESULTS Both drugs demonstrated systemic absorption. Prednisolone was detected on days 1, 7, and 14 (median plasma concentration, 24.80 ng/mL; range, 6.20 to 74.00 ng/mL), and dexamethasone was detected on days 1, 7, and 14 (2.30 ng/mL; 0 to 17.70 ng/mL). Neither prednisolone nor dexamethasone were detected in plasma samples on day 0 (baseline). Sampling from the jugular vein resulted in higher plasma drug concentrations than from a peripheral vein when samples from each day were combined. Plasma cortisol concentrations were significantly lower than baseline following 14 days of treatment with topical prednisolone acetate and dexamethasone. CLINICAL RELEVANCE Prednisolone and dexamethasone are detected in the plasma of healthy dogs following topical ophthalmic administration 4 times/d with prednisolone concentrations being close to a physiologic dose of orally administered prednisolone. Additional research is needed to evaluate the systemic absorption of these medications in dogs with ocular inflammation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10538
Author(s):  
Yassine Bouattour ◽  
Florent Neflot-Bissuel ◽  
Mounir Traïkia ◽  
Anne-Sophie Biesse-Martin ◽  
Robin Frederic ◽  
...  

Ceftazidime (CZ) and vancomycin (VA) are two antibiotics used to treat bacterial keratitis. Due to their physical incompatibility (formation of a precipitate), it is not currently possible to associate both molecules in a single container for ophthalmic administration. We firstly characterized the incompatibility then investigated if 2-hydroxypropyl-beta (HPβCD) and 2-hydroxypropyl-gamma cyclodextrins (HPγCD) could prevent this incompatibility. The impact of pH on the precipitation phenomena was investigated by analysing the supernatant solution of the mixture using high performance liquid chromatography. A characterization of the inclusion of CZ with HPγCD using 1H nuclear magnetic resonance (NMR), and VA with HPβCD using 1H-NMR and a solubility diagram was performed. A design of experiment was built to determine the optimal conditions to obtain a formulation that had the lowest turbidity and particle count. Our results showed that VA and CZ form an equimolar precipitate below pH 7.3. The best formulation obtained underwent an in-vitro evaluation of its antibacterial activity. The impact of HPCDs on incompatibility has been demonstrated through the inclusion of antibiotics and especially VA. The formulation has been shown to be able to inhibit the incompatibility for pH higher than 7.3 and to possess unaltered antibacterial activity.


2021 ◽  
Vol 17 (9) ◽  
pp. 1866-1873
Author(s):  
Ling Zhang ◽  
Chunlai Fang ◽  
Qiong Wu

The present investigation undertakes the formulation of nanoparticulate suspension of Riboflavin to treat keratoconus disease by applying it to the infected mice corneas. The nanoparticles of Riboflavin were prepared using single solvent evaporation method and later formulated as suspension using continuous probe sonication method. Then, both riboflavin nanoparticles and suspension were evaluated for various parameters. The nanoparticles showed smooth and spherical surface with in vitro drug release up to 77.89%. The drug content was found to be 97.23%–98.89%. The suspension was found to be visually clear with pH ranging from 6 to 7. The drug entrapment was found to be from 76.37% to 97.34%. Since there was no hemolytic activity, this formulation was suitable for ophthalmic administration. The Draize test confirmed the non-irritant, non-itchy nature of formulation. The prepared formulations, such as nanoparticulate gel and suspension, were found to be significantly efficacious in experimental animals.


Author(s):  
Tuğhan DURAN ◽  
Osman KARAKUŞ ◽  
İsmail Tuncer DEĞİM ◽  
Burcu ESER ◽  
Sermet SEZİGEN ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4502
Author(s):  
Luiselva Torrescano-De Labra ◽  
Enrique Jiménez-Ferrer ◽  
Brenda Hildeliza Camacho-Díaz ◽  
Gabriela Vargas-Villa ◽  
Manases González-Cortazar ◽  
...  

Pterygium is a corneal alteration that can cause visual impairment, which has been traditionally treated with the sap of Sedum dendroideum D.C. The pharmacological effect of a dichloromethane extract of S. dendroideum was demonstrated and implemented in a pterygium model on the healing process of corneal damage caused by phorbol esters. In mice of the ICR strain, a corneal lesion was caused by intravitreal injection of tetradecanoylphorbol acetate (TPA). The evolution of the corneal scarring process was monitored with vehicle, dexamethasone, and dichloromethane extract of S. dendroideum treatments by daily ophthalmic administration for fifteen days. The lesions were evaluated in situ with highlighted images of fluorescence of the lesions. Following treatment levels in eyeballs of IL-1α, TNF-α, and IL-10 cytokines were measured. The effective dose of TPA to produce a pterygium-like lesion was determined. The follow-up of the evolution of the scarring process allowed us to define that the treatment with S. dendroideum improved the experimental pterygium and had an immunomodulatory effect by decreasing TNF-α, IL-1α, and maintaining the level of IL-10 expression, without difference with respect to the healthy control. Traditional medical use of S. dendroideum sap to treat pterygium is fully justified by its compound composition.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 855
Author(s):  
Silvia Pescina ◽  
Fabio Sonvico ◽  
Adryana Clementino ◽  
Cristina Padula ◽  
Patrizia Santi ◽  
...  

There is increasing consensus in considering statins beneficial for age-related macular degeneration and in general, for immune and inflammatory mediated diseases affecting the posterior segment of the eye. However, all available data relate to oral administration, and safety and effectiveness of statins directly administered to the eye are not yet known, despite their ophthalmic administration could be beneficial. The aim was the development and the characterization of polymeric micelles based on TPGS or TPGS/poloxamer 407 to increase simvastatin solubility and stability and to enhance the delivery of the drug to the posterior segment of the eye via trans-scleral permeation. Simvastatin was chosen as a model statin and its active hydroxy acid metabolite was investigated as well. Results demonstrated that polymeric micelles increased simvastatin solubility at least 30-fold and particularly TPGS/poloxamer 407 mixed micelles, successfully stabilized simvastatin over time, preventing the hydrolysis when stored for 1 month at 4 °C. Furthermore, both TPGS (1.3 mPas) and mixed micelles (33.2 mPas) showed low viscosity, suitable for periocular administration. TPGS micelles resulted the best performing in delivery simvastatin either across conjunctiva or sclera in ex vivo porcine models. The data pave the way for a future viable ocular administration of statins.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 447
Author(s):  
Felipe M. González-Fernández ◽  
Annalisa Bianchera ◽  
Paolo Gasco ◽  
Sara Nicoli ◽  
Silvia Pescina

Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 149
Author(s):  
Xurxo García-Otero ◽  
Victoria Díaz-Tomé ◽  
Rubén Varela-Fernández ◽  
Manuel Martín-Pastor ◽  
Miguel González-Barcia ◽  
...  

Uveitis is a vision inflammatory disorder with a high prevalence in developing countries. Currently, marketed treatments remain limited and reformulation is usually performed to obtain a tacrolimus eye drop as a therapeutic alternative in corticosteroid-refractory eye disease. The aim of this work was to develop a mucoadhesive, non-toxic and stable topical ophthalmic formulation that can be safely prepared in hospital pharmacy departments. Four different ophthalmic formulations were prepared based on the tacrolimus/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes’ formation. Phase solubility diagrams, Nuclear Magnetic Resonance (NMR) and molecular modeling studies showed the formation of 1:1 and 1:2 tacrolimus/HPβCD inclusion complexes, being possible to obtain a 0.02% (w/v) tacrolimus concentration by using 40% (w/v) HPβCD aqueous solutions. Formulations also showed good ophthalmic properties in terms of pH, osmolality and safety. Stability studies proved these formulations to be stable for at least 3 months in refrigeration. Ex vivo bioadhesion and in vivo ocular permanence showed good mucoadhesive properties with higher ocular permanence compared to the reference pharmacy compounding used in clinical settings (t1/2 of 86.2 min for the eyedrop elaborated with 40% (w/v) HPβCD and Liquifilm® versus 46.3 min for the reference formulation). Thus, these novel eye drops present high potential as a safe alternative for uveitis treatment, as well as a versatile composition to include new drugs intended for topical ophthalmic administration.


2020 ◽  
Vol 62 (3) ◽  
pp. 200-209
Author(s):  
Emiliano Tesoro-Cruz ◽  
Norma Oviedo ◽  
Leticia Manuel-Apolinar ◽  
Sandra Orozco-Suárez ◽  
Miguel Pérez de la Mora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document