scholarly journals Development of Indigenous Local Exhaust Ventilation System: Reduction of Welders Exposure to Welding Fumes

2004 ◽  
Vol 46 (4) ◽  
pp. 323-328 ◽  
Author(s):  
Shakeel Zaidi ◽  
Natvarbhai Sathawara ◽  
Sunil Kumar ◽  
Sumitra Gandhi ◽  
Chimanlal Parmar ◽  
...  
Author(s):  
Meghan E Dueck ◽  
Ata Rafiee ◽  
James Mino ◽  
Sindhu G Nair ◽  
Samineh Kamravaei ◽  
...  

Abstract Welding fumes vary in composition depending on the materials and processes used, and while health outcomes in full-time welders have been widely studied, limited research on apprentices exists. Besides, few data are available for metals such as vanadium and antimony. This study aimed to look at individual metals present in welding fumes in the learning environment of apprentice welders. Forty-three welders and 41 controls were chosen from trade programmes at the Northern Alberta Institute of Technology. Ambient and personal air samples were collected at days 0, 1, 7, and 50 of their training and analysed for mass and metal concentrations using Inductively Coupled Plasma Mass Spectrometry. Results showed increases in particle and metal concentrations as apprentices progressed throughout their education and that concentrations at day 50 were similar to levels found in the literature for professional welders. Variable concentrations indicate that some individuals may not properly use the local exhaust ventilation system. Other possible explanation for variations are the position of the sampler on the shoulder, the time spent welding and in each welding position, and the skills of the welders. Strong relationships were observed between particle and metal concentrations, suggesting that these relationships could be used to estimate metal exposure in welders from particle exposure. Welding processes were the most important determinant of exposure in apprentice welders, with Metal Core Arc Welding producing the largest particle concentrations followed by oxyacetylene cutting, and Gas Metal Arc Welding. Health risk assessment showed that welder apprentices are at risk for overexposure to manganese, which suggests that professional welders should be monitored for manganese as they are exposed more than apprentices. Training in proper positioning of local exhaust ventilation system and proper use of respirators are recommended in training facilities.


2017 ◽  
Vol 6 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Sajad Zare ◽  
Yaser Sahranavard ◽  
Hossein Ali Hakimi ◽  
Mokhles Bateni ◽  
Masoumeh Karami ◽  
...  

2020 ◽  
Vol 33 (2) ◽  
pp. 310-315 ◽  
Author(s):  
Tee Lin ◽  
Omid Ali Zargar ◽  
Oscar Juina ◽  
Tzu-Chieh Lee ◽  
Dexter Lyndon Sabusap ◽  
...  

2013 ◽  
Vol 315 ◽  
pp. 997-1001 ◽  
Author(s):  
Ng Chee Seng ◽  
Abdul Mutalib Leman ◽  
Azmahani Sadikin

LEV is a ventilation system that collects and sucks out particles such as dusts, mists, gases, vapors or fumes out of work station, so that they can’t be breathed in by occupants. There is a lot of LEV allocated and installed in order to help protecting occupants’ health but it doesn’t work properly. To overcome this issue, computational fluid dynamics (CFD) will be implemented. Past studies CFD techniques represent a very significant improvement of air ventilation systems. However, CFD is just a tool in prediction model, which can lead to inaccuracy of predicting airflow due to problems with pre-processing, solver and post-processing with parameter from actual experimental results. As of yet, it is not possible to 100% accurately simulate airflow around a body. These codes are simply models which are close to that of a real flow, but not an exact match. All of these require validation to help minimizing percentage error in CFD methodology. Several strategies are needed to boost effectiveness of LEV in terms of predicting airflow in a geometry model. The outcome of this research can be used as a benchmark or guideline for industries to help improving indoor air quality (IAQ).


2016 ◽  
Vol 6 (2) ◽  
pp. 14-18
Author(s):  
Denis N. VATUZOV ◽  
Svetlana M. PURING

This article defines the options to improve the efficiency of local exhaust ventilation systems by incorporating into the circuit from the air cleaning devices droplet aerosol. Schemes connecting cleaning apparatus in ventilation management system are worked out. In the first embodiment, the placement aerozoleulovitelya purified ventilation air is discharged directly to the atmosphere, in the second embodiment, the cleaned air is used in the recovery system, which is removed after the street. The feasibility of using the heat exchanger in the scheme is justified by comparing the technical and economic options and the need to improve energy efficiency. The method of selection and calculation of air cleaning devices from droplet sprays, on the basis of which it is possible to determine the design parameters of the system, to evaluate the amount of captured material, and choose the most appropriate in each case unit, focusing on the desired performance of the ventilation system, the necessary degree of purification and the area for mounting the device.


2017 ◽  
Vol 7 (3) ◽  
pp. 19-23
Author(s):  
Svetlana M. PURING ◽  
Denis N. VATUZOV ◽  
Gennady I. TITOV

Functioning of industrial buildings is impossible without correctly organized ventilation system. Its work both regulates heat moist mode and the required indoor air purity that is cleaned with the help of air cleaning equipment. To make decision to construct the required air cleaning equipment at the enterprise it is worthwhile to give additional parameters and to solve a problem of multicriteria optimization to get the best results. The choice of the best variant is supposed to be carried out using Harrington’s desirability function. The conducted multicriteria analysis allowed to reveal optimum characteristics of air cleaning equipment, based on the required purifi cation air degree, the geometrical sizes of the equipment and aerodynamic resistance while introducing any particular device.


2020 ◽  
Vol 224 ◽  
pp. 03026
Author(s):  
Tatyana Zhilkina ◽  
Viktor Pukhkal ◽  
Vladislav Pankov

Local exhaust ventilation allows maximizing the localization of hazards with minimum values of air exchange in the room. For the study, the design of a local exhaust in the form of an air-jet hood at an open doorway of the UKM Classic M 2005 chamber by Mauting was adopted. Geometric models have been developed, including a heat treatment chamber, a room from which the chamber is loaded, a supply and exhaust hood over the door from the chamber to the room, and a supply air duct with air distributing devices. The results of a computational experiment on modeling the operation of the local exhaust ventilation system of the heat treatment chamber are presented. The STAR-CCM+ software package was used as a calculation program. The calculation results were analyzed. The influence of the air exchange scheme (location of the supply devices) in the room on the efficiency of the local exhaust devices (supply and exhaust hood) has been established.


Sign in / Sign up

Export Citation Format

Share Document