scholarly journals Seasonal Abundance, Biomass and Morphological Diversity of Picoplankton in Lake Superior: Importance of Water Column Mixing

2017 ◽  
Vol 1 (6) ◽  
Author(s):  
Carrick HJ
2014 ◽  
Vol 40 (2) ◽  
pp. 455-462 ◽  
Author(s):  
Elizabeth C. Minor ◽  
Brandy Forsman ◽  
Stephanie J. Guildford

2021 ◽  
Author(s):  
◽  
William N S Arlidge

<p>Viruses are a ubiquitous component of coral reef ecosystems, with several viral types, from at least seven prokaryotic and 20 eukaryotic virus families currently characterised from the surface mucopolysaccharide layer (SML), coral tissue and the water column. However, little is known about the ecology and function of these viruses. For example, what are the environmental drivers of viral abundance and diversity on coral reefs? In this study, the abundance and distribution of virus-like particles (VLPs) associated with the SML and reef water of the coral Montipora capitata were determined using epifluorescence microscopy, while transmission electron microscopy was employed to determine the morphological diversity of VLPs. Sampling was conducted across the Coconut Island Marine Reserve (CIMR) reef system, Kane’ohe Bay, O’ahu, Hawai’i. Viral abundance was correlated with select environmental drivers and prokaryote abundance, while non-metric multidimensional scaling was used to determine the key environmental drivers of the viral community assemblage. The water column contained high concentrations of VLPs (5.98 × 107 ml-1) and prokaryotes (3.11 × 106 ml-1), consistent with the considerable anthropogenic impacts at this location. In comparison, the SML contained lower concentrations of VLPs (2.61 × 107 ml-1) and prokaryotes (2.08 × 106 ml-1); of note, the densities of viruses and prokaryotes in the SML were strongly coupled while those in the reef water were not. VLP density in the water column varied spatially across the reef, with the most sheltered site and the only one not situated on the reef crest having a greater VLP density than the other sites. Temporal variations in the density of microbes (i.e. viruses and prokaryotes) in the reef water were pronounced, while in the SML microbial densities remained constant. However, no specific environmental drivers of this variability could be identified. In contrast, temperature and water quality were correlated with shifts in the morphological diversity of VLPs across the reef. Small (< 50 nm) polyhedral/spherical VLPs were dominant, and were positively correlated to chlorophyll-a concentration when in the SML. In this same habitat, Fuselloviridae-like VLPs, filamentous VLPs and bead-shaped VLPs were positively correlated to temperature. In the reef water a different pattern was apparent: large (> 100 nm) Podoviridae-like VLPs and elongate Myoviridae-like VLPs, as well as lemon-shaped VLPs of both size classes showed positive associations with turbidity, while large filamentous VLPs, Geminiviridae-like VLPs and rod-shaped VLPs were positively associated with temperature. These results demonstrate that the viral community of Coconut Island’s reef is highly diverse, and subject to spatial and temporal change, especially in the water column. However, while the environmental drivers of viral diversity were partly elucidated, we are still a long way from understanding the drivers of viral abundance. More detailed study, both spatially and temporally, of the CIMR environment is required, as is comprehensive molecular analysis of the viral community of Kane’ohe Bay. Only then can we begin to understand the importance of viruses to the health and function of this, and other reef sites.</p>


2006 ◽  
Vol 63 (7) ◽  
pp. 1496-1503 ◽  
Author(s):  
Michael E Sierszen ◽  
Gregory S Peterson ◽  
Jill V Scharold

In an investigation of the spatial characteristics of Laurentian Great Lakes food webs, we examined the trophic relationship between benthic amphipods (Diporeia) and plankton in Lake Superior. We analyzed the carbon and nitrogen stable isotope ratios of Diporeia and plankton at stations in water column depths of 4–300 m. Neither δ15N nor δ13C of plankton from the upper 50 m of the water column varied significantly with station depth. Diporeia isotope ratios exhibited depth-specific patterns reflecting changes in food sources and food web relationships with plankton. Diporeia was 13C enriched at station depths of <40 m, reflecting increased dietary importance of benthic algae. There was a systematic increase in Diporeia δ15N with depth, which appeared to result from a combination of dietary shifts in the nearshore and decompositional changes in Diporeia's principal food, sedimented plankton, in deep habitats. Diporeia δ13C and δ15N together described changes in food web isotope baseline with depth. They also discriminated three depth strata representing photic, mid-depth, and profundal zones. These findings have implications for our understanding of Great Lakes food webs and analyses of trophic position within them, the ecology of zoobenthos and plankton communities, and sampling designs for large lakes.


2021 ◽  
Author(s):  
◽  
William N S Arlidge

<p>Viruses are a ubiquitous component of coral reef ecosystems, with several viral types, from at least seven prokaryotic and 20 eukaryotic virus families currently characterised from the surface mucopolysaccharide layer (SML), coral tissue and the water column. However, little is known about the ecology and function of these viruses. For example, what are the environmental drivers of viral abundance and diversity on coral reefs? In this study, the abundance and distribution of virus-like particles (VLPs) associated with the SML and reef water of the coral Montipora capitata were determined using epifluorescence microscopy, while transmission electron microscopy was employed to determine the morphological diversity of VLPs. Sampling was conducted across the Coconut Island Marine Reserve (CIMR) reef system, Kane’ohe Bay, O’ahu, Hawai’i. Viral abundance was correlated with select environmental drivers and prokaryote abundance, while non-metric multidimensional scaling was used to determine the key environmental drivers of the viral community assemblage. The water column contained high concentrations of VLPs (5.98 × 107 ml-1) and prokaryotes (3.11 × 106 ml-1), consistent with the considerable anthropogenic impacts at this location. In comparison, the SML contained lower concentrations of VLPs (2.61 × 107 ml-1) and prokaryotes (2.08 × 106 ml-1); of note, the densities of viruses and prokaryotes in the SML were strongly coupled while those in the reef water were not. VLP density in the water column varied spatially across the reef, with the most sheltered site and the only one not situated on the reef crest having a greater VLP density than the other sites. Temporal variations in the density of microbes (i.e. viruses and prokaryotes) in the reef water were pronounced, while in the SML microbial densities remained constant. However, no specific environmental drivers of this variability could be identified. In contrast, temperature and water quality were correlated with shifts in the morphological diversity of VLPs across the reef. Small (< 50 nm) polyhedral/spherical VLPs were dominant, and were positively correlated to chlorophyll-a concentration when in the SML. In this same habitat, Fuselloviridae-like VLPs, filamentous VLPs and bead-shaped VLPs were positively correlated to temperature. In the reef water a different pattern was apparent: large (> 100 nm) Podoviridae-like VLPs and elongate Myoviridae-like VLPs, as well as lemon-shaped VLPs of both size classes showed positive associations with turbidity, while large filamentous VLPs, Geminiviridae-like VLPs and rod-shaped VLPs were positively associated with temperature. These results demonstrate that the viral community of Coconut Island’s reef is highly diverse, and subject to spatial and temporal change, especially in the water column. However, while the environmental drivers of viral diversity were partly elucidated, we are still a long way from understanding the drivers of viral abundance. More detailed study, both spatially and temporally, of the CIMR environment is required, as is comprehensive molecular analysis of the viral community of Kane’ohe Bay. Only then can we begin to understand the importance of viruses to the health and function of this, and other reef sites.</p>


2019 ◽  
Vol 78 (3) ◽  
Author(s):  
Katsumi Matsumoto ◽  
Kathy S. Tokos ◽  
Joseph Rippke

In a future warming world, a fully dynamical model of Lake Superior projects that the lake will undergo significant physical and biological changes by the middle of the 21st century with important implications for the surrounding region. Projections for the winter include drastically reduced ice and very weak water column stratification. In contrast, the summertime surface warming is projected to begin earlier, last longer, and be more enhanced. In concert, summertime biological production is projected to shift earlier and become larger. These changes have potentially important consequences for stakeholders with interests in shipping, coastal habitability, fishing, water quality, and recreation. Perhaps more fundamentally, the projected changes imply that Lake Superior may change into a different kind of lake with a dramatically weakened dimictic behavior.


Sign in / Sign up

Export Citation Format

Share Document