scholarly journals Climate projection of Lake Superior under a future warming scenario

2019 ◽  
Vol 78 (3) ◽  
Author(s):  
Katsumi Matsumoto ◽  
Kathy S. Tokos ◽  
Joseph Rippke

In a future warming world, a fully dynamical model of Lake Superior projects that the lake will undergo significant physical and biological changes by the middle of the 21st century with important implications for the surrounding region. Projections for the winter include drastically reduced ice and very weak water column stratification. In contrast, the summertime surface warming is projected to begin earlier, last longer, and be more enhanced. In concert, summertime biological production is projected to shift earlier and become larger. These changes have potentially important consequences for stakeholders with interests in shipping, coastal habitability, fishing, water quality, and recreation. Perhaps more fundamentally, the projected changes imply that Lake Superior may change into a different kind of lake with a dramatically weakened dimictic behavior.

2019 ◽  
Vol 40 (8) ◽  
pp. 3701-3713
Author(s):  
Chenghai Wang ◽  
Danyang Cui ◽  
Jerasorn Santisirisomboon

PLoS Biology ◽  
2013 ◽  
Vol 11 (10) ◽  
pp. e1001682 ◽  
Author(s):  
Camilo Mora ◽  
Chih-Lin Wei ◽  
Audrey Rollo ◽  
Teresa Amaro ◽  
Amy R. Baco ◽  
...  

2014 ◽  
Vol 40 (2) ◽  
pp. 455-462 ◽  
Author(s):  
Elizabeth C. Minor ◽  
Brandy Forsman ◽  
Stephanie J. Guildford

Author(s):  
Hiram Levy ◽  
M. Daniel Schwarzkopf ◽  
Larry Horowitz ◽  
V. Ramaswamy ◽  
K. L. Findell

2016 ◽  
Vol 565 ◽  
pp. 1151-1164 ◽  
Author(s):  
C. Pla ◽  
S. Cuezva ◽  
E. Garcia-Anton ◽  
A. Fernandez-Cortes ◽  
J.C. Cañaveras ◽  
...  

2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


2021 ◽  
Author(s):  
Josep Cos ◽  
Francisco J Doblas-Reyes ◽  
Martin Jury

<p>The Mediterranean has been identified as a climate change hot-spot due to increased warming trends and precipitation decline. Recently, CMIP6 was found to show a higher climate sensitivity than its predecessor CMIP5, potentially further exacerbating related impacts on the Mediterranean region.</p><p>To estimate the impacts of the ongoing climate change on the region, we compare projections of various CMIP5 and CMIP6 experiments and scenarios. In particular, we focus on summer and winter changes in temperature and precipitation for the 21st century under RCP2.6/SSP1-2.6, RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 as well as the high resolution HighResMIP experiments. Additionally, to give robust estimates of projected changes we apply a novel model weighting scheme, accounting for historical performance and inter-independence of the multi-member multi-model ensembles, using ERA5, JRA55 and WFDE5 as observational reference. </p><p>Our results indicate a significant and robust warming over the Mediterranean during the 21st century irrespective of the used ensemble and experiments. Nevertheless, the often attested amplified Mediterranean warming is only found for summer. The projected changes vary between the CMIP5 and CMIP6, with the latter projecting a stronger warming. For the high emission scenarios and without weighting, CMIP5 indicates a warming between 4 and 7.7ºC in summer and 2.7 and 5ºC in winter, while CMIP6 projects temperature increases between 5.6 and 9.2ºC in summer and 3.2 to 6.8ºC in winter until 2081-2100 in respect to 1985-2005. In contrast to temperature, precipitation changes show a higher level of uncertainty and spatial heterogeneity. However, for the high emission scenario, a robust decline in precipitation is projected for large parts of the Mediterranean during summer. First results applying the model weighting scheme indicate reductions in CMIP6 and increases in CMIP5 warming trends, thereby reducing differences between the two ensembles.</p>


Sign in / Sign up

Export Citation Format

Share Document