scholarly journals Argon arc welding of titanium VT22 alloy using filler flux-cored wire

2016 ◽  
Vol 2016 (9) ◽  
pp. 10-14 ◽  
Author(s):  
V.P. Prilutsky ◽  
◽  
S.L. Shvab ◽  
I.K. Petrichenko ◽  
S.V. Akhonin ◽  
...  
Keyword(s):  
2016 ◽  
Vol 2016 (9) ◽  
pp. 9-13 ◽  
Author(s):  
V.P. Prilutsky ◽  
◽  
S.L. Shvab ◽  
I.K. Petrichenko ◽  
S.V. Akhonin ◽  
...  
Keyword(s):  

2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


2018 ◽  
Vol 226 ◽  
pp. 03029
Author(s):  
Nikolay V. Kobernik ◽  
Alexander S. Pankratov

The influence of nanoscale refractory titanium carbide particles on the structure and properties of weld metal in automatic submerged arc welding is considered. Composite granules based on nickel were used to introduce the compound into the composition of the weld pool. Two schemes for introducing granules into the weld pool were tested, characterized by different temperature conditions: to the head part of the welding pool with the help of “ligature” and to the tail section with the help of additional filler wire. The prospects of introducing nano-sized titanium carbide into the tail part of the weld pool as part of a flux-cored wire are shown. With this method, the structure of the weld metal is observed to modify: the average size of the primary crystals of the weld metal is reduced by almost 50%. At the same time, the value of the toughness of the weld metal increases: the average value of this index increases by 36%. When titanium carbide is introduced as part of the “ligature” into the head of the weld pool, despite the effect of modifying (reducing the width of the primary crystals by 30%), the average value of the toughness of the weld metal decreases.


2019 ◽  
Vol 37 (3) ◽  
pp. 268-274
Author(s):  
Seong-Woo Choi ◽  
JaeKeun Hong ◽  
Chan Hee Park ◽  
Sangwon Lee ◽  
Namhyun Kang ◽  
...  

2021 ◽  
Vol 58 (6) ◽  
pp. 332-353
Author(s):  
A. Kisasoz ◽  
M. Tümer ◽  
A. Karaaslan

Abstract In this study, the effect of multipass welding on the microstructure, mechanical and corrosion properties of the UNS 32205 duplex stainless steels (DSS) is investigated. The UNS 32205 DSS is welded in 3 or 7 passes by flux-cored arc welding (FCAW) using E2209 T1 – 1/4 flux cored wire. The weldments are characterized by light optical microscopy (LOM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Feritscope analysis, Charpy impact tests and electrochemical corrosion tests. The results suggest that the multipass FCAW process induces the formation of γ2 in the weld seam. The mechanical and the corrosion properties of the weld joints are affected by the heat input variation and the phase transformations. Especially, the formation of the γ2 in the weld seam results in a decrease in the corrosion resistance of the joint samples.


2013 ◽  
Vol 7 (1) ◽  
pp. 87-87
Author(s):  
Seiji Katayama

Welding is one of the most versatile joining methods for constructing products and structures in nearly all industrial fields. Arc has been widely used as a cheap heat source for welding since carbon arc fusion welding was first applied to join Pb plates in about 1880. New welding technologies have been developed according to social needs or changes since 1960. Therefore, half-automated welding, automatic welding and highefficient welding have been developed for saving man-power and afterward full automation. First, tandem one-side SAW (submerged arc welding), high-speed rotational arc, high-heat input SAW, tandem wire MAG, etc. have been introduced as highly efficient welding processes. On the other hand, as gas-shielding arc welding processes, CO2 gas, MAG, man-power saving automatic welding, the use of a flux-cored wire, AC MIG, MIG with two wires, laser-arc hybrid welding, CMT process have been developed and most widely employed in the industries in conjunction with an advance in the welding heat sources from thyristor to inverter and nowadays digital inverter. Furthermore, robotization has been developed from spot welding robot to squire robot, multi-axes GAM robot, mobile robot, portable many-axes robot and 7 axes robot together with the development in welding sensors such as probe sensor, one-touch sensor, magnetic sensor, arc sensor, laser-slit light sensor, stereo CCD, etc. Recently, novel arc sources are not developed, but deep weld penetration and geometry are controllably obtained in TIG welding by active flux pasted on the plate surface, good use of an active gas and narrow oxidation treatment. Clean MIG process for steels is also developed by use of a unique solid-wire of double layers with different melting temperatures, and different hybrid heat sources of plasma and GMA or laser and MIG. Hybrid welding processes with CO2 laser and MAG, disk laser and MAG, fiber laser and CO2 arc or MAG has recently been applied in the shipbuilding industry. I thank the authors for their generous cooperation to the publication of new development in the welding technologies.


1984 ◽  
Vol 2 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Tetsuo Suga ◽  
Minoru Kobayashi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document