scholarly journals Special Issue on Progress in Welding Processes

2013 ◽  
Vol 7 (1) ◽  
pp. 87-87
Author(s):  
Seiji Katayama

Welding is one of the most versatile joining methods for constructing products and structures in nearly all industrial fields. Arc has been widely used as a cheap heat source for welding since carbon arc fusion welding was first applied to join Pb plates in about 1880. New welding technologies have been developed according to social needs or changes since 1960. Therefore, half-automated welding, automatic welding and highefficient welding have been developed for saving man-power and afterward full automation. First, tandem one-side SAW (submerged arc welding), high-speed rotational arc, high-heat input SAW, tandem wire MAG, etc. have been introduced as highly efficient welding processes. On the other hand, as gas-shielding arc welding processes, CO2 gas, MAG, man-power saving automatic welding, the use of a flux-cored wire, AC MIG, MIG with two wires, laser-arc hybrid welding, CMT process have been developed and most widely employed in the industries in conjunction with an advance in the welding heat sources from thyristor to inverter and nowadays digital inverter. Furthermore, robotization has been developed from spot welding robot to squire robot, multi-axes GAM robot, mobile robot, portable many-axes robot and 7 axes robot together with the development in welding sensors such as probe sensor, one-touch sensor, magnetic sensor, arc sensor, laser-slit light sensor, stereo CCD, etc. Recently, novel arc sources are not developed, but deep weld penetration and geometry are controllably obtained in TIG welding by active flux pasted on the plate surface, good use of an active gas and narrow oxidation treatment. Clean MIG process for steels is also developed by use of a unique solid-wire of double layers with different melting temperatures, and different hybrid heat sources of plasma and GMA or laser and MIG. Hybrid welding processes with CO2 laser and MAG, disk laser and MAG, fiber laser and CO2 arc or MAG has recently been applied in the shipbuilding industry. I thank the authors for their generous cooperation to the publication of new development in the welding technologies.

2021 ◽  
Vol 2021 (2) ◽  
pp. 4342-4347
Author(s):  
MARIAN SIGMUND ◽  
◽  
TADEAS CICHA

The article describes a replacement and benefits between manual gas metal arc welding (GMAW) with solid wire and semi-automatic flux-cored arc welding (FCAW) with metal flux-cored wire for a specific application of a welded steel compensator used for connecting piping systems to form larger units. For the replacement of the technologies and improvement of the welding efficiency and productivity a specific type of carbon steel mounting insert, DN300 PN16, was selected. Since these pressure parts are subject to the directive 2014/68/EU, both the welding processes have to meet the same welding quality requirements. In particular, they are the welding procedure qualification report (WPQR) and the welder’s or welding operator’s qualification in accordance with valid European standards. Based on this requirement, a sample was selected so that it would cover the widest possible range of carbon steel mounting inserts produced. This article describes the whole experiment including the selection of the right equipment and filler material, finding the ideal welding parameters, and the subsequent qualification of the welding procedure and the operator with emphasis on the largest possible increase in the welding speed and productivity for these specific weldments.


2007 ◽  
Vol 26-28 ◽  
pp. 481-484 ◽  
Author(s):  
Cheol Hee Kim ◽  
Hyun Byung Chae ◽  
Jun Ki Kim ◽  
Jeong Han Kim

Laser welding has not easily been adopted in shipbuilding industry because of its poor gap bridging ability. Recently, laser-GMA hybrid welding process showed possibility to overcome the tight gap tolerance with improved productivity. The laser-arc hybrid welding process is inherently complex because it has three kinds of process parameters: arc welding, laser welding and hybrid welding parameters. In this study, welding phenomena were investigated to optimize the hybrid process parameter; interspacing distance between laser and arc. The bead surface and cross-sectional shapes were evaluated, and weld pool shape and droplet transfer were monitored by high speed camera to clarify welding phenomena.


Author(s):  
Bo Wang ◽  
Xunming Zhu ◽  
Hongchang Zhang ◽  
Hongtao Zhang ◽  
Jicai Feng

In this article, a novel hybrid welding process called plasma-TIG coupled arc welding was proposed to improve the efficiency and quality of welding by utilizing the full advantage of plasma and TIG welding processes. The two arcs of plasma and TIG were pulled into each other into one coupled arc under the effect of Lorentz force and plasma flow force during welding experiments. The arc behavior of coupled arc was studied by means of it’s arc profile, arc pressure and arc force conditions. The coupled arc pressure distribution measurements were performed. The effects of welding conditions on coupled arc pressure were evaluated and the maximum coupled arc pressure was improved compared with single-plasma arc and single-TIG arc. It was found that the maximum arc pressure was mainly determined by plasma arc current and plasma gas flow. According to the results, the proposed coupled arc welding process have both advantages of plasma arc and TIG method, and it has a broad application prospect.


1969 ◽  
Vol 6 (01) ◽  
pp. 66-75
Author(s):  
Koichi Masubuch

During the past 30 years, many new welding processes have been applied to the fabrication of various metal structures. However, these processes have largely been ignored by the shipbuilding industry, and modern ships continue to be fabricated primarily by a manual arc-welding process that is more than fifty years old. This paper discusses some of the problems related to welding ship structures, focusing mainly upon two important subject areas:new welding processes, andnotch toughness of weld metal. The author reviews briefly developments in the technology and, emphasizing the technical problems, indicates how research can improve the state of the art.


2016 ◽  
Vol 862 ◽  
pp. 41-48
Author(s):  
Ján Viňáš ◽  
Miroslav Greš ◽  
Tomáš Vaško

The paper presents the application of weld layers used in renovations of functional surfaces of components that are exposed to several tribodegradation factors in operation of metallurgical and engineering industries. Surfaces of selected components are renovated using arc welding processes, namely: (MMAW) Manual Metal Arc Welding, (SAW) Submerged Arc Welding methods, (GMAW) Gas metal arc welding and (FCAW) Flux cored wire metal arc welding without gas shield. Claddings were made always three-layered directly on the surfaces of renovated components using dedicated cladding machines in operations and laboratory conditions respectively. Their quality was assessed using non-destructive tests, namely (VT) visual testing by STN EN ISO 17637 and (UT) Ultrasonic testing STN EN ISO 11666. Within the destructive tests the quality of claddings was evaluated using the metallographic analysis conducted on a light microscope Olympus BX and electron microscope Jeol where the impact of mixing the weld metal as well as heat treatment after cladding on the final structure of claddings was observed. Using the Shimadzu HMV 2 device the microhardness of cladding layers was evaluated on metallographic samples by STN EN ISO 9015-2. In laboratory conditions the resistance of cladding layers to abrasive wear was verified on the device Di-1. Experimental testing of the claddings confirmed that the selected additives and cladding parameters witting individual technology were chosen correctly as in cladding layers no presence of internal defects was observed.


Author(s):  
S. Shawn Lee ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

One of the major challenges in manufacturing automotive lithium-ion batteries and battery packs is to achieve consistent weld quality in joining multiple layers of dissimilar materials. While most fusion welding processes face difficulties in such joining, ultrasonic welding stands out as the ideal method. However, inconsistency of weld quality still exists because of limited knowledge on the weld formation through the multiple interfaces. This study aims to establish real-time phenomenological observation on the multilayer ultrasonic welding process by analyzing the vibration behavior of metal layers. Such behavior is characterized by a direct measurement of the lateral displacement of each metal layer using high-speed images. Two different weld tools are used in order to investigate the effect of tool geometry on the weld formation mechanism and the overall joint quality. A series of microscopies and bond density measurements is carried out to validate the observations and hypotheses of those phenomena in multilayer ultrasonic welding. The results of this study enhance the understanding of the ultrasonic welding process of multiple metal sheets and provide insights for optimum tool design to improve the quality of multilayer joints.


Author(s):  
D. Begg ◽  
G. Beynon ◽  
E. Hansen ◽  
J. Defalco ◽  
K. Light

The construction costs for a northern pipeline will represent approximately half of the project costs and will be extremely challenging with much of the work being carried out in harsh winter conditions at temperatures, as low as −55°C. The welding costs are a major component of the overall construction costs and industry continues to seek future generation pipeline welding technologies to achieve additional improvements in productivity and enable significant cost savings. The current state-of-the-art welding processes for onshore pipelines involve mechanized gas metal arc welding (GMAW). The dual tandem pulse GMAW process provides the greatest productivity to date with four welding arcs operating simultaneously on each welding carriage. Based on the progression of laser welding technology, it is highly likely that the next generation of automated pipeline welding equipment will be built around hybrid laser arc welding (HLAW). The primary objective of this project is to develop, test, and validate a “field ready” HLAW system for full circumferential girth welding of large diameter (NPS30 and above) high strength pipe. The system is based on both robotic and direct clamp-on platforms where potential applications include double jointing operations in pipe mills and as well for onshore and offshore pipeline construction projects. The pipe grades evaluated include both X80 and X100, with wall thicknesses of 10.4mm and 14.3mm, respectively. Lab trials include high speed root pass, high speed root pass with laser assisted GMAW for fill and cap passes, and, single pass complete joint penetration girth welding. This paper discusses the approach to the development of the HLAW system, however at the time the paper was submitted no mechanical testing or system validation trials had been completed. It is expected results will be available for the conference presentation.


2021 ◽  
Vol 2139 (1) ◽  
pp. 012008
Author(s):  
J L Lázaro Plata ◽  
C S Sánchez Rincón

Abstract Gas metal arc welding is one of the most influential processes in the production and repair of structures and equipment; therefore, the need to improve the productivity and quality of welded joints has led to the development of techniques for good control of welding parameters. Also, the development of semi-automatic welding processes led to the control of one of the variables such as pulsed current; this technique is characterized by a lower heat input and lower energy expenditure, which directly influences the structural quality of the welded joint and the geometry of the weld bead. This work focused on evaluating the effects of various welding operating parameters using the central composite design tool based on the response surface methodology; next, the experimental development employed an inverter type power source for weld depositions, a commercial grade Stargold clean 96% Ar and 4% CO2 shielding gas at the rate of 15 L/min stationary arc, a 1.2 mm metal cored wire for welding deposit and a carbon steel base plate with a thickness of 6 mm. During the welding process, the torch was kept at a 90° inclination and a 16 mm stroke. To examine the adequacy of the empirical models and the significance of the regression coefficients, the variance analysis was employed. Consequently, the graphs were obtained through the determination of the model; from the statistical results obtained, it was shown that the above models were adequate to predict the weld width, bead height, and penetration within the range of variables studied. Furthermore, it was observed that the wire feed rate it has a very marked effect on weld bead geometry, followed by frequency pulse and peak current; finally, the effectiveness of employing these methodologies for the management of variables attributing to the execution of welding tasks with higher accuracy was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document