scholarly journals Reconstruction of the absorbed dose of ionizing radiation for helophytes in the water bodies of the near emergency zone at the Chornobyl NPP

2020 ◽  
Vol 21 (4) ◽  
pp. 338-346
Author(s):  
V.V. Belyaev ◽  
◽  
O.M. Volkova ◽  
D.I. Gudkov ◽  
S.P. Pryshlyak

Based on modeling the dynamics of the Chornobyl emission radionuclide content in the components of the most polluted reservoirs of the Chornobyl Exclusion Zone, the absorbed dose for helophytes was reconstructed. During the growing season of 1986, the absorbed dose of plants of Glyboke Lake was 78 Gy, Daleke Lake 39 Gy. The absorbed dose rate of plant roots was 2.4 times higher than that of aboveground organs. According to actual data, in the period 2016 - 2019 in the Glyboke Lake average dose of external and internal plant irradiation was about 7.5 mGy/year, and in the Daleke Lake 5.6 mGy/year. On abnormally contaminated sections of the Glyboke Lake, the external dose reaches 0.5 - 1.0 Gy/year. During the period 1986 - 2020, the maximum cumulative (biological) dose of helophytes of Glyboke Lake can be 190 Gy, Daleke Lake 80 - 85 Gy.

2010 ◽  
Vol 58 (spe4) ◽  
pp. 25-32 ◽  
Author(s):  
Wagner de S. Pereira ◽  
Alphonse Kelecom ◽  
Delcy de A. Py Júnior

A methodology was developed for converting the activity concentration of radionuclides (Bq kg-1) into absorbed dose rate (Gy y-1), aiming an approach to environmental radioprotection based on the concept of standard dose limit. The model considers only the internal absorbed dose rate. This methodology was applied to the cubera snapper fish (Lutjanus cyanopterus, Cuvier, 1828) caught off the coast of Ceará. The natural radionuclides considered were uranium-238, radium-226, lead-210, thorium-232 and radium-228. The absorbed dose rates were calculated for individual radionuclides and the type of emitted radiation. The average dose rate due to these radionuclides was 5.36 µGy y-1, a value six orders of magnitude smaller than the threshold value of absorbed dose rate used in this study (3.65 10³ mGy y-1), and similar to that found in the literature for benthic fish. Ra-226 and U-238 contributed 67% and 22% of the absorbed dose rate, followed by Th-232 with 10%. Ra-228 and Pb-210, in turn, accounted for less than 1% of the absorbed dose rate. This distribution is somewhat different from that reported in the literature, where the Ra-226 accounts for 86% of the absorbed dose rate.


2021 ◽  
Author(s):  
Rena Mikailova ◽  
Yuichi Onda ◽  
Sergey Fesenko ◽  
Hiroaki Kato

<p>The nuclear disaster from the FNPP accident resulted in the major contamination of forest ecosystem of Eastern Japan. Forests are the most susceptible to ionizing radiation exposure, especially conifers due to their high radiosensitivity and pollutant interception abilities. A high concentration of radionuclides in forest ecosystems caused an increase in the dose rate. Japanese cedar belongs to Japan's endemic species; therefore, the current study was aimed at the absorbed dose rate assessment of the C. japonica forest stand in the Yamakiya district. To estimate the absorbed dose rates to the Japanese cedar trees, we used the <sup>134,137</sup>Cs concentrations in different forest ecosystems’ compartments. The calculations include data from 2011 to 2017. The dose rate assessments were performed at different heights of the forest ecosystem (canopy, trunk, understory). The average dose rates decreased from 40 µGy/day in 2011 to 13 µGy/day in 2017. The assessment results comply with the ambient dose rate measured from 2011 to 2015. The assessment showed that the water content in the litter and topsoil layers significantly influence the formation of the dose rate. Via the model, we simulated the dose rates for 20% and 80% of the litter water content. The results showed that the average measured dose rates lie within the estimated results. Due to the lack of data on litter and soil moisture during sampling, now we are trying to calculate the ground layers’ water content using the available information on precipitation rate.</p>


Author(s):  
Askar Bakhadur ◽  
Nadezhda Aluker ◽  
Galymzhan Bekseitov ◽  
Yerbolat Ospanov ◽  
Bolat Uralbekov

In this work, the ages of archaeological ceramics were determined by the thermoluminescent method after X-ray diffraction analysis (XRD) of ceramic samples, which confirms that quartz is the main component phase of the products. This allowed to use the sample preparation technique without isolating the quartz phase from the ceramic sample. Silicon oxide based soil-equivalent thermoluminescent detectors were used to determine the annual absorbed dose rate at the sampling site. The average dose rate at sampling site was 0.62 ± 0.02 cGy/year. Calculation of the ceramics ages was carried out after checking the linearity of lightsums accumulation for samples in the dose range up to 2000 cGy. Based on the performed studies, the ages of the ceramic products were determined that do not contradict to archaeologists dating of these products. It is proposed to use the procedure for determining ceramic samples by the thermoluminescent method after their phase composition identification by XRD. In the case of the predominant mineral composition of quartz phase (the proportion of quartz is more than 60% of the total composition of ceramics), the measurements can be carried out without the quartz isolating; while presence of clay mineral fractions commensurate with quartz levels can lead to the separation of the quartz.


2019 ◽  
Vol 188 (1) ◽  
pp. 98-108
Author(s):  
F O Wanjala ◽  
N O Hashim ◽  
D Otwoma ◽  
C Nyambura ◽  
J Kebwaro ◽  
...  

Abstract The activity concentration of radionuclides 238U, 232Th and 40K in soil and the absorbed dose rate (ADRA) at 1 m above the ground in Ortum was determined. The activity concentration in soils ranged from 33 to 85, 20 to 67 and 148–1019 Bq kg–1, respectively with an average of 40 ± 1.43, 56 ± 1.46 and 425 ± 19.24 Bq kg–1, respectively. The activity concentration of 232Th and 238U was found to reduce with increasing depth while that of 40K increased with increasing depth. The average activity concentration in soil was higher than the world average values. The average ADRA in air at 1 m above the ground was found to be 112 ± 29.6 nGy h–1. The soil and rocks in Ortum are recommended for use because the activity concentration of the terrestrial radionuclides is lower than the recommended threshold values.


2018 ◽  
Vol 53 (4) ◽  
pp. 265-278 ◽  
Author(s):  
S. Penabei ◽  
D. Bongue ◽  
P. Maleka ◽  
T. Dlamini ◽  
Saïdou ◽  
...  

In order to assess the levels of natural radioactivity and the associated radiological hazards in some building materials of the Mayo-Kebbi region (Chad), a total of nineteen samples were collected on the field. Using a high resolution γ-ray spectrometry system, the activity concentrations of radium (226Ra), thorium (232Th) and potassium (40K) in these samples have been determined. The measured average activity concentrations range from 0.56 ± 0.37 Bq kg−1 to 435 ± 7 Bq kg−1, 1.3 ± 0.6 Bq kg−1 to 50.6 ± 1.1 Bq kg−1 and 4.3 ± 2.0 Bq kg−1 to 840 ± 9 Bq kg−1, for 226Ra, 232Th and 40K, respectively. The highest 226Ra average activities is found in soil brick samples of Zabili. The highest mean value of 232Th and 40K concentrations are found in soil brick samples of Madajang. The activity concentration and the radium equivalent activity (Raeq) have been compared to other studies done elsewhere in the world. Their average values are lower than most of those of countries with which the comparison has been made. Were also evaluated, the external radiation hazard index, the internal radiation hazard index, the indoor air absorbed dose rate, the outdoor air absorbed dose rate, the activity utilization index, the annual effective dose, the annual gonadal dose equivalent, the representative level index, as well as, the excess lifetime cancer risk. In accordance with the criterion of the Organization for Economic Cooperation and Development, our results show that soil brick samples of Zabili and Madajang increases the risk of radiation exposure, thereby the possibility of developing cancer by people living in this environment. Based on these findings, brick samples from Zabili and Madajang are not recommended for construction purposes. All other sample materials have properties that are acceptable for use as building materials in terms of radiation hazard.


2001 ◽  
Author(s):  
J M Carson ◽  
P B Holman ◽  
R B K Shives ◽  
K L Ford ◽  
C T Harper ◽  
...  

2020 ◽  
Vol 24 (3) ◽  
pp. 435-442 ◽  
Author(s):  
M. Atipo ◽  
O. Olarinoye ◽  
B. Awojoyogbe ◽  
M. Kolo

Mineral mining and milling can be a source of national economic and technological development. However, mining of minerals has been confirmed to disturb the natural distribution of radioisotopes in the soil, air and water bodies in the biota. In an attempt to evaluate the radiological burden resulting from tin mining activities at Rayfield-Du area of Jos, the background gamma-radiation level in the mine was measured via a well calibratedhand-held dosimeter placed at 1 m above ground level. The mean absorbed dose rate, annual effective dose rate and excess lifetime cancer risk for the mine was 0.83 μSvh-1; 1.44 mSv-1 and 0.005 respectively. Generally, dose rates were higher in the mine pits and processing areas as compared to administrative areas of the mine. The mean measured dose rate and calculated dose parameters for the mine were all high when compared to the regulatory limit for public exposure. The potential of developing radiation-induced health defects as a result of high radiation absorbed dose rate by the miners and dwellers around the mine is highly probable.  Keywords: Gamma-radiation; mine; absorbed dose rate; radiation exposure.


Sign in / Sign up

Export Citation Format

Share Document