“Multisphere” system of radiometric calibration of precise space borne opto-electronic instruments for remote sensing

2014 ◽  
Vol 20 (4(89)) ◽  
pp. 22-30
Author(s):  
L.A. Mikheenko ◽  
◽  
V.N. Borovytskyi ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1291 ◽  
Author(s):  
Kaiqiu Xu ◽  
Yan Gong ◽  
Shenghui Fang ◽  
Ke Wang ◽  
Zhiheng Lin ◽  
...  

In recent years, the acquisition of high-resolution multi-spectral images by unmanned aerial vehicles (UAV) for quantitative remote sensing research has attracted more and more attention, and radiometric calibration is the premise and key to the quantification of remote sensing information. The traditional empirical linear method independently calibrates each channel, ignoring the correlation between spectral bands. However, the correlation between spectral bands is very valuable information, which becomes more prominent as the number of spectral channels increases. Based on the empirical linear method, this paper introduces the constraint condition of spectral angle, and makes full use of the information of each band for radiometric calibration. The results show that, compared with the empirical linear method, the proposed method can effectively improve the accuracy of radiometric calibration, with the improvement range of Mean Relative Percent Error (MRPE) being more than 3% in the range of visible band and within 1% in the range of near-infrared band. Besides, the method has great advantages in agricultural remote sensing quantitative inversion.


Author(s):  
A. Yu. Kuznecov ◽  
A. A. Sadikova ◽  
V. I. Gornyj ◽  
I. Sh. Latypov

The aim of the work is to research and develop methods for synthesizing aperture in hyperspectral systems for remote sensing of the Earth to reduce weight and size characteristics by applying methods of program-algorithmic processing of the input signal and implementing the synthesized aperture. A method of neural networks for deconvolution on the construction of a radial basis network is developed. A method has been developed to increase the synthesis of apertures in hyperspectral systems for remote sensing of the Earth. A method for increasing the spatial resolution of images obtained by optical systems for remote sensing of the Earth is described. A method for radiometric calibration of output data has been developed, which allows universalizing the analysis of spectral characteristics. In the process, to achieve the goals were used: methods of spectral optics, mathematical analysis and statistics, methods of processing images and signals. The project results contribute to the reduction of overall weight and cost characteristics and the possibility of synthesizing the aperture at the exit of the polychromator, which will avoid the use of expensive camera lenses in hyperspectral systems of remote sensing of the Earth. The developed methods for synthesizing aperture in hyperspectral systems of remote sensing of the Earth differ from the existing ones in that the receiving device for the video signal does not contain structural changes, and they contain the function of the algorithmic apparatus, which includes the analysis of the functions of the scattering point, the deconvolution of the recorded signal is performed by the method of neural networks after the stage learning.


Author(s):  
C. Barrientos ◽  
J. Estay ◽  
E. Barra ◽  
D. Muñoz

Abstract. This work presents the results of the absolute radiometric calibration of the sensor on-board the “Sistema Satelital de Observación de la Tierra” (SSOT) using the vicarious approach based on in-situ measurements of surface reflectance and atmospheric retrievals. The SSOT mission, also known as FASat-Charlie, has been successfully operating for almost nine years ‒at the time of writing‒, exceeding its five-year nominal design life and providing multispectral and panchromatic imagery for different applications. The data acquired by SSOT has been used for emergency and disaster management and monitoring, cadastral mapping, urban planning, defense purposes, among other uses. In this paper, some results of the efforts conducting to the exploitation of the SSOT imagery for remote sensing quantitative applications are detailed. The results of the assessment of the radiometric calibration of the satellite sensor, performed in the Atacama Desert, Chile, using the data acquired and made available by the Gobabeb Station of Radiometric Calibration Network (RadCalNet), Namibia, are presented. Additionally, we describe the process for obtaining the absolute gains for the multispectral and panchromatic bands of the SSOT sensor by adapting the reflectance−based approach (Thome et al., 2001). The outputs achieved from the Atacama data collection have generated consistent results and average differences in the order of 3% with respect to the RadCalNet TOA reflectances. The presented results are an example of the benefits of having access to the RadCalNet data and how it increases the opportunity of conducting Cal/Val activities using endorsed calibration sites.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 320
Author(s):  
Lu Li ◽  
Fengli Zhang ◽  
Yun Shao ◽  
Qiufang Wei ◽  
Qiqi Huang ◽  
...  

To verify the performance of the high-resolution fully polarimetric synthetic aperture radar (SAR) sensor carried by the Xinzhou 60 remote-sensing aircraft, we used corner reflectors to calibrate the acquired data. The target mechanism in high-resolution SAR images is more complex than it is in low-resolution SAR images, the impact of the point target pointing error on the calibration results is more obvious, and the target echo signal of high-resolution images is more easily affected by speckle noise; thus, more accurate extraction of the point target position and the response energy is required. To solve this problem, this paper introduces image context information and proposes a method to precisely determine the integration region of the corner reflector using sliding windows based on the integral method. The validation indicates that the fully polarimetric SAR sensor on the Xinzhou 60 remote-sensing aircraft can accurately reflect the radiometric characteristics of the ground features and that the integral method can obtain more stable results than the peak method. The sliding window allows the position of the point target to be determined more accurately, and the response energy extracted from the image via the integral method is closer to the theoretical value, which means that the high-resolution SAR system can achieve a higher radiometric calibration accuracy. Additionally, cross-validation reveals that the airborne SAR images have similar quality levels to Sentinel-1A and Gaofen-3 images.


Sign in / Sign up

Export Citation Format

Share Document