scholarly journals Analysis of Causes and Preventing Ways of Early Workability Loss of Three-Cone Rock Bit Cutters

2020 ◽  
Vol 42 (5) ◽  
pp. 731-751
Author(s):  
R. S. Yakym ◽  
◽  
D. Yu. Petryna ◽  
Keyword(s):  
2012 ◽  
Vol 02 (01) ◽  
pp. 1-5 ◽  
Author(s):  
Guorong Wang ◽  
Wang Juan ◽  
Lin Zhong
Keyword(s):  

1969 ◽  
Vol 9 (04) ◽  
pp. 443-450 ◽  
Author(s):  
Paul F. Gnirk ◽  
J.B. Cheatham

Abstract The results of combined analytical and experimental studies involving simulated multiple bit-tooth penetration into rock are incorporated into a drilling rate equation for roller-cone bits assuming rather idealized downhole conditions. In particular, it is assumed That the rock behaves statically in a ductile fashion during bit-tooth penetration and that the rock chips are instantaneously removed from the bottom of the drill hole. The general analysis demonstrates an application of plasticity theory for the rock/bit-tooth interaction to The formulation of an upper limit on rotary drilling rate. Introduction Extensive experimentation involving single and indexed bit-tooth penetration into rock in a confining pressure environment has demonstrated that the pressure environment has demonstrated that the chip formation process is of a ductile, or pseudoplastic, nature at sufficiently low differential pseudoplastic, nature at sufficiently low differential pressures so as to be of interest in rotary drilling. pressures so as to be of interest in rotary drilling. Coincident with the experimentation, analytical consideration has been given to the theoretical problems of single and indexed bit-tooth penetration problems of single and indexed bit-tooth penetration into rock. In general, the analyses have assumed that the rock behaves statically in a rigid-plastic fashion and obeys the Mohr-Coulomb yield criterion. The quantitative comparison between experimental and calculated values of bit-tooth load required for chip formation has been remarkably good for a variety of rocks commonly encountered in drilling and at simulated differential pressures as low as 500 to 1,000 psi. Results obtained recently for indexed bit-tooth penetration indicate that the work (or energy) penetration indicate that the work (or energy) required to produce a unit volume of rock chip can be minimized by a proper combination of bit-tooth spacing and bit-tooth load for a given rock type and differential pressure. By utilizing this information, it is possible co formulate a drilling rate equation, at least in a preliminary fashion, for a roller-cone bit performing under rather idealized downhole conditions. In particular, through the use of characteristic dimensionless quantities pertinent to a roller-cone bit and to indexed bit-tooth penetration, interrelationships among bit weight, rotary speed, rotary power, bit diameter, rock strength and bit-tooth shape and spacing can be explicitly expressed. In the formulation of the equations, however, it is assumed that the rock chips are instantaneously removed from the bottom of the drill hole and that the rock behaves in a ductile manner during bit-tooth penetration. In addition, the effects of bit-tooth load application And penetration by a yawed tooth at an oblique angle are neglected. Although the analysis is presented in the light of some rather restrictive conditions, it does demonstrate a method of applying fundamental rock/bit-tooth interaction data, obtained by combining the results of analysis and experiment to the formulation of a drilling rate equation for rotary drilling. INDEXED BIT-TOOTH/ROCK INTERACTION PREVIOUS RESULTS PREVIOUS RESULTS The mechanics of bit-tooth/rock interaction under simulated conditions of borehole environment have been extensively described in a number of papers. In particular, the effects of differential papers. In particular, the effects of differential pressure, mechanical properties of rock, pore fluid, pressure, mechanical properties of rock, pore fluid, bit-tooth shape and spacing, rate of bit-tooth load application and dynamic filtration below the bit-tooth have been investigated experimentally. From a sequence of experiments, it was demonstrated that, for dry rock at atmospheric pore pressure, the mode of chip formation exhibits a transition, with increasing confining pressure, from predominantly brittle to predominantly ductile. SPEJ P. 443


Author(s):  
Sorin G. Teodorescu ◽  
Eric C. Sullivan ◽  
Paul E. Pastusek

Drilling operations represent a major cost in discovering and exploring new petroleum reserves. Poor drilling performance, for example low ROP, can lead to high cost per foot. In order to optimize the performance of drill bits, the dynamic behavior of the bit and the drillstring has to be monitored. In recent developments, we have deployed a sensor / data acquisition (DAQ) system that is mounted at the bit, which can monitor the behavior of the drill bit and dynamic dysfunctions associated with the operating parameters, different rock formations and rock/bit interactions. A modified shank accommodates the sensor / DAQ system. Its location was determined based on extensive analysis of the bit’s structural integrity. Initial tests verified the ability of the system to identify PDC bit dysfunctions, such as backward whirl — one of the most bit damaging events in the drilling operation. Placing a sensor system in the bit allows for accurate pattern recognition and severity determination in terms of dynamic dysfunctions of the bit and can aid in optimizing drilling parameters in pursuit of increased ROP and reduced drilling costs.


1968 ◽  
Vol 90 (2) ◽  
pp. 217-225 ◽  
Author(s):  
F. H. Deily ◽  
D. W. Dareing ◽  
G. H. Paff ◽  
J. E. Ortloff ◽  
R. D. Lynn

A self-contained downhole recording instrument was developed and used to measure and record drilling string forces and motions. The eight signals recorded by pulse-width modulation on magnetic tape were: axial, torsional, and bending loads; axial, angular, and lateral accelerations; and internal (pipe) and external (annular) pressure. The device was used over a two-year period to collect data in fifteen wells under a wide range of drilling conditions. After about nine minutes of cumulative recording time, the tool was retrieved and brought to the surface. Data were converted from the magnetic tape to analog type oscillograph display and, in some cases, were digitized for analysis purposes. Normal variations in measured downhole bit load usually ranged between 25 and 50 percent of the mean value. Maximum bit loads reached over 3.5 times mean loads in some instances. Frequencies of weight, torque and bending traces showed evidences of rock bit tooth action, of cone action, of rotation, and also of pump pulsations. Large annular pressure variations accompanied large load variations.


1979 ◽  
Vol 101 (1) ◽  
pp. 53-58
Author(s):  
R. B. Pan ◽  
J. B. Cheatham

The rock/bit-tooth interaction problem has been approximated previously by plasticity analysis of a wedge indenting a half-space. In the previous work the rock, under high confining pressure, was assumed to be perfectly plastic. In the present paper, an approximate method is presented for including the effects of strain hardening of the rock on the pressure distribution at the rock bit-tooth interface. The slip-line field for the perfectly plastic solution is used as a basis for applying corrections for the strain-hardening effect.


2000 ◽  
Author(s):  
N. Challamel ◽  
H. Sellami ◽  
E. Chenevez ◽  
L. Gossuin
Keyword(s):  

1985 ◽  
Vol 25 (03) ◽  
pp. 321-329 ◽  
Author(s):  
D.K. Ma ◽  
S.L. Yang

Abstract The bits' and bit cones' angular velocities are variable with time. All published papers on cone bit kinematics, however, are based on the supposition that the motions of cones are uniform. This supposition, therefore, has been the main obstacle to determining the objective law of the working cone bit. The apparatus, methods, and tests results for measuring the bit and cone instantaneous angular velocities are described. A new theoretical analysis of cone bit motion is proposed and some interesting new conclusions are obtained that will help designers and users of cone bits. Introduction Although cone bits have been used for more than 70 years, their kinematics and dynamics have not been investigated thoroughly. Unfortunately, many questions, such as the variation of velocity of a bit tooth during its impact against the hole bottom and the distance or velocity of slip between the bit tooth and the hole bottom, both of which concern the designers and users of cone bits, have not been answered explicitly. Many papers on kinematics or dynamics of cone bits proposed that the rotations of bit and cones were proposed that the rotations of bit and cones were uniform. Some papers treated the motion of the cone as a rigid body motion with a fixed point"; others looked on the motion of a tooth-row as a linear rolling. None of these concepts has reflected the actual behavior accurately. In recent years, a few authors have noticed the problem of the nonuniform rotations of cones, but no detailed problem of the nonuniform rotations of cones, but no detailed study has been carried out. This paper discusses the Southwestern Petroleum Inst. Rock Bit Research Laboratory's experimental equipment for measuring the motion of the frill-scale rock bit. and the single-tooth-row roller. Some test results are shown. The relational equations among the kinematic and geometric parameters of the single-tooth-row roller sheet with respect to double frames of reference have been derived by using polar coordinates. These equations are used to explain the test data. Experimental Equipment A square hole is made in the thrust button in each cone of the frill-scale bit. A round hole is made through each journal along its axis. In each journal, a small shaft is inserted in the round hole. The square end of the small shaft is fixed into the square hole in the thrust button and the other end is joined to the shaft of a sensitive DC tachometer generator. A magneto-electric oscillograph is used for recording the output voltage of the tachometer generator. The graph of the instantaneous angular velocities of cones are recorded on film. A drilling machine is converted into testing equipment for studying the kinematics of a single-tooth-row roller. It is shown schematically in Fig. 1. In this figure, (1) denotes the DC motor with stepless speed variation; (2) represents the gear box; (3) shows some large iron disks used to simulate the bit weight and the moment of the upper part of the drillstring; (4) is a sensitive DC tachometer generator joined to (5) and used for measuring the angular speed of the imaginary upper drillstring; (5) is a vertical slender shaft; and (6) denotes a special experimental bit body. (One-, two-, or three-cone assemblies may be fixed on this bit body and their offset may be controlled.) The (7) represents the roller fixed to (8); (8) denotes a shaft that is supported on the bit body by two roller bearings; (9) shows the second sensitive DC tachometer generator used for measuring the angular velocity of the roller; and (10) represents a displacement transducer with strain gauges, which is used for measuring the vertical displacement of the bit body. The information produced by Instruments (4), (9), and (10) shown in Fig. 1 are recorded by an oscillograph on film. Brief Description of Test Results The full-scale bit test results indicated that the angular velocities of cones varied randomly over time and produced large-amplitude oscillations. Fig. 2 gives the produced large-amplitude oscillations. Fig. 2 gives the angular velocities vs. time graphs of the three cones of the rock bit XHP-215Z, taken while drilling in medium-hard sandstone. Careful observation of these graphs shows that the number of angular speed large-amplitude oscillations in one cycle of the cone is equal to or approximately equal to the tooth number in a certain tooth-row on that cone. This tooth-row usually is found in the second or third row of the cone and not in the first (gauge) row, as mentioned in some papers. The total number of oscillations of the cone per cycle usually approximates the total number of teeth on that cone. The tooth-rows are the "cells" of cones and a specific tooth-row plays an important role in the motion of cones. Therefore, a more detailed study of the motion of a single-tooth-row roller is necessary to explain the motion of the rock bits. Valuable results have been obtained from the tests of various rollers under different test conditions. These results generally illustrated that the bit cones' rotation has never been uniform. SPEJ p. 321


Sign in / Sign up

Export Citation Format

Share Document