Downhole Measurements of Drill String Forces and Motions

1968 ◽  
Vol 90 (2) ◽  
pp. 217-225 ◽  
Author(s):  
F. H. Deily ◽  
D. W. Dareing ◽  
G. H. Paff ◽  
J. E. Ortloff ◽  
R. D. Lynn

A self-contained downhole recording instrument was developed and used to measure and record drilling string forces and motions. The eight signals recorded by pulse-width modulation on magnetic tape were: axial, torsional, and bending loads; axial, angular, and lateral accelerations; and internal (pipe) and external (annular) pressure. The device was used over a two-year period to collect data in fifteen wells under a wide range of drilling conditions. After about nine minutes of cumulative recording time, the tool was retrieved and brought to the surface. Data were converted from the magnetic tape to analog type oscillograph display and, in some cases, were digitized for analysis purposes. Normal variations in measured downhole bit load usually ranged between 25 and 50 percent of the mean value. Maximum bit loads reached over 3.5 times mean loads in some instances. Frequencies of weight, torque and bending traces showed evidences of rock bit tooth action, of cone action, of rotation, and also of pump pulsations. Large annular pressure variations accompanied large load variations.

2021 ◽  
Vol 6 (1) ◽  
pp. 42-51
Author(s):  
D. N. Moldashi

With increasing depth of exploration and process boreholes (at small drilling diameters), the probability of deviation of the borehole path from design trajectory increases many times; i. e. zenith curvature and azimuth deviation of the borehole path occur. Therefore, developing methods for keeping vertical path of the borehole when drilling deeper horizons of ore bodies is a very topical issue. The paper presents the results of developing a new bottom-hole assembly for drilling boreholes in soft rocks using screw casing centralizers, which provide good stabilizing and centering effects to mitigate horizontal departure of the hole axis from the design direction and minimize vertical curvature of the hole path (zenith angle) while maintaining sufficient drill string flexibility. The developed technical solutions provide simplicity of design and ability to adapt to wide range of mining, geological and technological drilling conditions. The feasibility of manufacturing the centralizers by own efforts and the technological feasibility of quick and easy connecting the centralizer with other elements of the bottom-hole assembly have been substantiated. The manufacture efficiency is proved by the use of inexpensive and wear-resistant materials in the centralizer armouring, for which tungsten-cobalt or titanium-cobalt hard-alloy inserts were used. In addition, prevailing volume of borehole drilling in soft rocks allowed using replaceable centering elements, as well as their repair and restoration to increase their service life. The manufactured centralizer has a low production cost due to the design simplicity and the use of inexpensive wearresistant material and will compete in the market of drilling tools and technical devices for drill string stabilization. The economic effect from the introduction of the self-produced centralizers amounted to more than 170,000 tenge per a borehole.


2018 ◽  
Vol 7 (4) ◽  
pp. 13-21
Author(s):  
Todd Backes ◽  
Charlene Takacs

There are a wide range of options for individuals to choose from in order to engage in aerobic exercise; from outdoor running to computer controlled and self-propelled treadmills. Recently, self-propelled treadmills have increased in popularity and provide an alternative to a motorized treadmill. Twenty subjects (10 men, 10 women) ranging in age from 19-23 with a mean of 20.4 ± 0.8 SD were participants in this study. The subjects visited the laboratory on three occasions. The purpose of the first visit was to familiarize the subject with the self-propelled treadmill (Woodway Curve 3.0). The second visit, subjects were instructed to run on the self-propelled treadmill for 3km at a self-determined pace. Speed data were collected directly from the self-propelled treadmill. The third visit used speed data collected during the self-propelled treadmill run to create an identically paced 3km run for the subjects to perform on a motorized treadmill (COSMED T150). During both the second and third visit, oxygen consumption (VO2) and respiratory exchange ratio (R) data were collected with COSMED’s Quark cardiopulmonary exercise testing (CPET) metabolic mixing chamber system. The VO2 mean value for the self-propelled treadmill (44.90 ± 1.65 SE ml/kg/min) was significantly greater than the motorized treadmill (34.38 ± 1.39 SE ml/kg/min). The mean R value for the self-propelled treadmill (0.91 ± 0.01 SE) was significantly greater than the motorized treadmill (0.86 ± 0.01 SE). Our study demonstrated that a 3km run on a self-propelled treadmill does elicit a greater physiological response than a 3km run at on a standard motorized treadmill. Self-propelled treadmills provide a mode of exercise that offers increased training loads and should be considered as an alternative to motorized treadmills.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1737 ◽  
Author(s):  
Kang Ren ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng

A key challenge to environmental flow assessment in many rivers is to evaluate how much of the discharge flow should be retained in the river in order to maintain the integrity and valued features of riverine ecosystems. With the increasing impact of climate change and human activities on riverine ecosystems, the natural flow regime paradigm in many rivers has become non-stationary conditions, which is a new challenge to the assessment of environmental flow. This study presents a useful framework to (1) detect change points in runoff time series using two statistical methods (Mann-Kendall test method and heuristic segmentation method), (2) adjust data of the changed period against the original flow series into a stationary condition using a procedure of reconstruction; and (3) incorporate inter- and intra-annual streamflow variability with adjusted streamflow to evaluate environmental flow. The Jialing to Han inter-basin water transfer project was selected as the case study. Results indicate that a change point of 1994 was identified, revealing that the stationarity of annual streamflow series is invalid. The variations of reconstructed streamflow series are roughly consistent with original streamflow series, especially in the maximum/minimum values and rise/fall rates, but the mean value of reconstructed streamflow series is increased. The reconstructed streamflow series would further serve to eliminate the non-stationary of original streamflow, and incorporating the inter- and intra-annual variability would upgrade the ecosystem fitness. Selecting different criteria for the conservation of riverine ecosystems can have significantly different consequences, and we should not focus on the protection of specific objectives that will inevitably affect other aspects. This study provides a useful framework for environmental flow assessment and can be applied to a wide range of instream flow management approaches to protect the riverine ecosystem.


2015 ◽  
Vol 15 (10) ◽  
pp. 5429-5442 ◽  
Author(s):  
E. Giannakaki ◽  
A. Pfüller ◽  
K. Korhonen ◽  
T. Mielonen ◽  
L. Laakso ◽  
...  

Abstract. Raman lidar data obtained over a 1 year period has been analysed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010 to 31 January 2011. The seasonal behaviour of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest centre heights of free-tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l., also elsewhere). The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analysed intensive and extensive optical properties was high during all seasons. Layers were observed at a mean centre height of 2100 ± 1000 m with an average lidar ratio of 67 ± 25 sr (mean value with 1 standard deviation) at 355 nm and a mean extinction-related Ångström exponent of 1.9 ± 0.8 between 355 and 532 nm during the period under study. Except for the intensive biomass burning period from August to October, the lidar ratios and Ångström exponents are within the range of previous observations for urban/industrial aerosols. During Southern Hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free-tropospheric layers. Specifically, lidar ratios at 355 nm were 89 ± 21, 57 ± 20, 59 ± 22 and 65 ± 23 sr during spring (September–November), summer (December–February), autumn (March–May) and winter (June–August), respectively. The extinction-related Ångström exponents between 355 and 532 nm measured during spring, summer, autumn and winter were 1.8 ± 0.6, 2.4 ± 0.9, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD) obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm. The contribution of free-tropospheric aerosols on the AOD had a wide range of values with a mean contribution of 46%.


2021 ◽  
Author(s):  
Alwin Förster ◽  
Lars Panning-von Scheidt

Abstract Turbomachines experience a wide range of different types of excitation during operation. On the structural mechanics side, periodic or even harmonic excitations are usually assumed. For this type of excitation there are a variety of methods, both for linear and nonlinear systems. Stochastic excitation, whether in the form of Gaussian white noise or narrow band excitation, is rarely considered. As in the deterministic case, the calculations of the vibrational behavior due to stochastic excitations are even more complicated by nonlinearities, which can either be unintentionally present in the system or can be used intentionally for vibration mitigation. Regardless the origin of the nonlinearity, there are some methods in the literature, which are suitable for the calculation of the vibration response of nonlinear systems under random excitation. In this paper, the method of equivalent linearization is used to determine a linear equivalent system, whose response can be calculated instead of the one of the nonlinear system. The method is applied to different multi-degree of freedom nonlinear systems that experience narrow band random excitation, including an academic turbine blade model. In order to identify multiple and possibly ambiguous solutions, an efficient procedure is shown to integrate the mentioned method into a path continuation scheme. With this approach, it is possible to track jump phenomena or the influence of parameter variations even in case of narrow band excitation. The results of the performed calculations are the stochastic moments, i.e. mean value and variance.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xixian Lin ◽  
Yuming Zhang ◽  
Yimeng Zhang ◽  
Guangjian Rong

Purpose The purpose of this study is to design a more flexible and larger range of the dimming circuit that achieves the independence of multiple LED strings drive and can time-multiplex the power circuit. Design/methodology/approach The state-space method is used to model the BUCK circuit working in Pseudo continuous conduction mode, analyze the frequency characteristics of the system transfer function and design the compensation network. Build a simulation platform on the Orcad PSPICE platform and verify the function of the designed circuit through the simulation results. Use Altium Designer 16 to draw the printed circuit board, complete the welding of various components and use the oscilloscope, direct current (DC) power supply and a signal generator to verify the circuit function. Findings A prototype of the proposed LED driver is fabricated and tested. The measurement results show that the switching frequency can be increased to 1 MHz, Power inductance is 2.2 µH, which is smaller than current research. The dimming ratio can be set from 10% to 100%. The proposed LED driver can output more than 48 W and achieve a peak conversion efficiency of 91%. Originality/value The proposed LED driver adopts pulse width modulation (PWM) dimming at a lower dimming ratio and adopts DC dimming at a larger dimming ratio to realize switching PWM dimming to analog dimming. The control strategy can be more precise and have a wide range of dimming.


1961 ◽  
Vol 38 (4) ◽  
pp. 695-705
Author(s):  
J. B. BALINSKY ◽  
E. BALDWIN

1. Eighty-two single determinations of ammonia and urea excretion by Xenopus laevis indicated that the percentage of ammonia varied from 40 to 80%, with a mean value of 62%. 2. Measurements of excretion on successive days after feeding showed that a large amount of ammonia was produced soon after feeding, but that ammonia excretion declined rapidly. Urea excretion, not so high initially, remained more or less constant until the third or fourth day, often exceeding ammonia excretion at that time. Thereafter, it also declined and the excretion of both substances reached a constant starvation level by the fifteenth day. 3. Both ammonia and urea excretion were equally affected by temperature. The Q10's were near 2 in the range 20-30° C., but greater in the range 10-20° C. 4. At least 86% of ammonia, and 81% of urea were excreted through the cloaca. 5. The mean 24 hr. urine output of Xenopus at 20% C. was 23.6 ml. per 100 g. body weight. 6. Although the blood ammonia concentration did not appear to be zero, the urine/blood concentration ratio of ammonia was greater than 100. The urine/blood concentration ratio of urea was not significantly different from unity, and constant over a very wide range of concentrations. 7. The above result is interpreted to indicate passive glomerular filtration of urea, and little or no tubular reabsorption of water. 8. It is suggested that ammonia is formed in the kidney, and actively secreted into the glomerular filtrate.


2020 ◽  
Vol 10 (1) ◽  
pp. 62-65
Author(s):  
Ruslan Politanskyi ◽  
Maria Vistak ◽  
Andriy Veryga ◽  
Tetyana Ruda

The article analyzes the physical processes that occur in spin-valve structures during recording process which occurs in high-speed magnetic memory devices. Considered are devices using magnetization of the ferromagnetic layer through transmitting magnetic moment by polarized spin (STT-MRAM). Basic equations are derived to model the information recording process in the model of symmetric binary channel. Because the error probability arises from the magnetization process, a model of the magnetization process is formed, which is derived from the Landau-Lifshitz-Gilbert equations under the assumption of a single-domain magnet. The choice of a single-domain model is due to the nanometer size of the flat magnetic layer. The developed method of modeling the recording process determines the dependence of such characteristics as the bit error probability and the rate of recording on two important technological characteristics of the recording process: the value of the current and its duration. The end result and the aim of the simulation is to determine the optimal values of the current and its duration at which the speed of the recording process is the highest for a given level of error probability. The numerical values of the transmission rate and error probability were obtained for a wide range of current values (10–1500 μA) and recording time of one bit (1–70 ns), and generally correctly describe the process of information transmission. The calculated data were compared with the technical characteristics of existing industrial devices and devices which are the object of the scientific research. The resulting model can be used to simulate devices using different values of recording currents: STT-MRAM series chips using low current values (500-100 μA), devices in the stage of technological design and using medium current values (100–500 μA) and devices that are the object of experimental scientific research and use high currents (500–1000 μA). The model can also be applied to simulate devices with different data rates, which have different requirements for both transmission speed and bit error probability. In this way, the model can be applied to both high-speed memory devices in computer systems and signal sensors, which are connected to sensor networks or connected to the IoT.


1980 ◽  
Vol 26 (6) ◽  
pp. 763-765 ◽  
Author(s):  
R C Baxter

Abstract A simple method of calculating confidence limits for radioimmunoassay data is presented. The method involves the use of the within-assay variation in dose estimate of three routine quality-control specimens, measured in repeated assays, to estimate the confidence limits for results on unknown samples. Results for control specimens are combined by calculating the unique quadratic curve fitting a graph of within-assay standard deviation vs mean value for each control. This method requires no special data accumulation or advanced computing equipment. For cortisol, lutropin, and thyroxine radioimmunoassays, confidence limits calculated in this way have been compared with those calculated from the variance of the response variable “B/B0” in repeated standard curves. Both methods agree well with actual limits observed when plasma pools containing a wide range of hormone concentrations are assayed repeatedly.


Sign in / Sign up

Export Citation Format

Share Document