scholarly journals Influence of Azospirillum brasilense 10/1 on Associative Nitrogen Fixation and Intravarietal Polymorphism of Spring Triticale

2015 ◽  
Vol 77 (5) ◽  
pp. 29-36
Author(s):  
V.P. Patika ◽  
◽  
O.V. Nadkernichna ◽  
O.O. Shahovnina ◽  
◽  
...  
1988 ◽  
Vol 110 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Rai

SummaryHigh-temperature-adapted strains RAU 1, RAU 2 and RAU 3 ofAzospirillum brasilenseC 7 were isolated from stepwise transfer to higher temperature (30 to 42 °C). One of the strains (RAU 1) showed more growth, greater nitrogenase and hydrogenase activities at 30 and 42 °C than parental and other temperature-adapted strains. This strain also showed growth and more nitrogenase activity from pH 6·5 to 8·0. Strain RAU 1 showed cross-resistance to penicillin (300/µg/ml) but not to streptomycin, kanamycin, viomycin and polymixin B at 30 and 42 °C. It was demonstrated in field plots in calcareous soil that seed inoculation with RAU 1 enhanced mineral uptake of cheena. Inoculation with RAU 1 led to a significant increase in associative nitrogen fixation, dry weight of roots, grain and straw yield of cheena compared with the uninoculated control with or without applied N, but the effect of seed inoculation with high-temperature-adapted strains was variable with different genotypes of cheena.


1983 ◽  
Vol 38 (7-8) ◽  
pp. 571-577 ◽  
Author(s):  
Hermann Bothe ◽  
Gislene Barbosa ◽  
Johanna Dobereiner

The O2- sensitivitiy of N2-fixation by the carotenoid forming strain Azospirillum brasilense Cd and the colourless strain Sp 7 is compared in the present communication. As no difference in the reaction is observed with both strains, it is concluded that carotenoids do not protect nitrogenase from damage by O2. Azospirillum spp. have also been shown to perform NO3-- dependent N2-fixation. The physiological properties of this reaction are described in more detail in the present communication. Evidence is presented that NO3-- dependent N2-fixation is a transitory reaction, proceeding only as long as the enzymes of assimilatory nitrate reduction are synthesized by the cells.


Sign in / Sign up

Export Citation Format

Share Document