scholarly journals The procedure for determining pressure losses in washing fluid flow in hydraulic system of the core barrel

2017 ◽  
Vol 11 (1) ◽  
pp. 65-71 ◽  
Author(s):  
A Kozhevnykov ◽  
◽  
A Dreus ◽  
L Baochang ◽  
◽  
...  
Author(s):  
Daniel Broc ◽  
Gianluca Artini

ASTRID is a project for an industrial prototype of a 600 MWe sodium cooled Fast Reactor, led by CEA. An important program is in progress for the development and the validation of numerical tools for the simulation of the dynamic mechanical behavior of the Fast Reactor cores, with both experimental and numerical parts. The cores are constituted of Fuel Assemblies (of FA) and Neutronic Shields (or NS) immersed in the primary coolant (sodium), which circulates inside the Fluid Assemblies. The FA and the NS are slender structures, which may be considered as beams, form a mechanical point of view. The dynamic behavior of this system has to be understood, for design and safety studies. Two main movements have to be considered: global horizontal movements under a seismic excitation, and opening of the core. The fluid leads to complex interactions between the structures in the whole core. The dynamic behavior of the core is also strongly influenced by contacts between the beams and by the sodium, which limit the relative displacements. Numerical methods and models are built to describe and simulate this dynamic behavior. The validation of the numerical tools is based on the results of different experimental programs, already performed or in progress. The paper is mainly devoted to the modeling of the Fluid Structure Interaction phenomena in the Fast Reactor cores. Tubes bundles immersed in a dense fluid are very common in the nuclear industry (reactor cores and steam generators). In the case of an external excitation (earthquake or shock) the presence of the fluid leads to “inertial effects” with lower natural frequencies, and “dissipative effects”, with higher damping. The geometry of a tubes bundle is complex, which may lead to very huge sizes for the numerical models. Many works have been made during the last decades to develop homogenization, in order to simplify the problem. Theoretical analyses are presented on different simplifications and assumptions which can be made in the homogenization approach. The accuracy of the different assumptions depends of the conditions of the system: fluid flow or fluid at rest, small or large displacements of the structure. In the general case, it is theoretically necessary to consider the Navier Stokes equations: the fluid flow is fully nonlinear. Models have been developed during the last years, based on the Euler linear equations, corresponding to a fluid at rest, with small displacements of the structure. Only the inertial effects are theoretically described but the dissipative effects may be taken into account by using a Rayleigh damping. Different theoretical analyses show that, even in the case of a nonlinear fluid flow, the linear potential flow models may be used as linear equivalent models. In the cases with an important head loss in the fluid flow through the tubes, the fluid movement is mainly driven by the important forces exchanged with the structure and by the pressure gradient. The global equations of the system are close to the equations used for porous media, like the Darcy equations. An important condition to get a relevant model is to describe globally the energy balance in the system. The energy given to the fluid by the solid correspond to a variation of kinetic energy in the fluid and to energy dissipation in the fluid. Attention will be paid to the cases where the tubes bundle is in interaction with free fluid, without tubes. The global equation of the system has to be accurate for the tubes bundle and for the free fluid also.


1985 ◽  
Vol 25 (04) ◽  
pp. 482-490 ◽  
Author(s):  
Robert Ray McDaniel ◽  
Asoke Kumar Deysarkar ◽  
Michael Joseph Callanan ◽  
Charles A. Kohlhaas

Abstract A test apparatus is designed to carry out dynamic and static fluid-loss tests of fracturing fluids. This test apparatus simulates the pressure difference, temperature, rate of shear, duration of shear, and fluid-flow pattern expected under fracture conditions. For a typical crosslinked fracturing fluid, experimental results indicate that fluid loss values can be a function of temperature, pressure differential, rate of shear, and degree of non-Newtonian behavior of the fracturing fluid. A mathematical development demonstrates that the fracturing-fluid coefficient and filter-cake coefficient can be obtained only if the individual pressure drops can be measured during a typical fluid-loss test. Introduction In a hydraulic fracturing treatment, the development of fracture length and width is strongly dependent on a number of key fluid and formation parameters. One of the most important of these parameters is the rate at which the fracturing fluid leaks, off into the created fracture faces. This parameter, identified as fluid loss, also influences the time required for the fracture to heal after the stimulation treatment has been terminated. This in turn will influence the final distribution of proppant in the fracture and will dictate when the well can be reopened and the cleanup process started. Historically, tests to measure fluid loss have been carried out primarily under what is characterized as static conditions. In such tests, the fracturing fluid is forced through filter paper or through a thin core wafer under a pressure gradient, and the flow rate at the effluent side is determined. Of course, the use of filter paper cannot account for reservoir formation permeability and porosity; therefore, the fluid-loss characteristics derived from such tests should be viewed as only gross approximations. The static core-wafer test on the other hand, reflects to some extent the interaction of the formation and fracturing-fluid properties. However, one important fluid property is altogether ignored in such static core-wafer tests. This is the effect of shear rate in the fracture on the rheology (viscosity) of fracturing fluid and subsequent effects of viscosity on the fluid loss through the formation rock. In the past, several attempts were made to overcome the drawbacks of static core-wafer tests by adopting dynamic fluid-loss tests. Although these dynamic tests were a definite improvement over the static versions, each had drawbacks or limitations that could influence test results. In some of the studies, the shearing area was annular rather than planar as encountered in the fracture. In other cases, the fluid being tested did not experience a representative shear rate for a sufficiently long period of time. An additional problem arose because most studies were performed at moderate differential pressures and temperatures. The final drawback in several of the studies was that the fluid flow and leakoff patterns did not realistically simulate those occurring in the field. In the first part of this paper, we emphasize the design of a dynamic fluid-loss test apparatus that possesses none of these drawbacks. In the second part of the paper, test results with this apparatus are presented for three different fluid systems. These systems areglycerol, a non-wall-building Newtonian fluid,a polymer gel solution that is slightly wall-building and non-Newtonian, anda crosslinked fracturing system that is highly non-Newtonian in nature and possesses the ability to build a wall (filter cake) on the fracture face (see Table 1). The fluids were subjected to both static and dynamic test procedures. In the third part of the paper, results of experiments carried out with crosslinked fracturing fluid for different core lengths, pressure differences, temperatures, and shear rates are compared and the significance of the difference of fluid loss is emphasized. Experimental Equipment and Procedure The major components of the experimental apparatus shown in Fig. 1 are a fluid-loss cell, circulation pump, heat exchanger, system pressurization accumulators, and a fluid-loss recording device. The construction material throughout most of the system is 316 stainless steel. The fluid loss is measured through a cylindrical core sample, 1.5 in. [3.81 cm] in diameter, mounted in the fluid-loss cell. Heat-shrink tubing is fitted around the circumference of the core and a confining pressure is maintained to prevent channeling. Fracturing fluid is circulated through a rectangular channel across one end of the core. SPEJ P. 482^


Author(s):  
Bjo¨rn-Christian Will ◽  
Friedrich-Karl Benra

The present paper covers fluid flow in rotor-stator cavities with inward through-flow. First, a general introduction into the physics of the cavity boundary layer flow is given. The structure of the flow is very complex and depends on different dimensionless parameters. For practical applications, simple and robust calculation procedures are crucial for design purposes. Two basic modelling approaches are compared (3 layer model of Kurokawa [14] and “one layer” approach of Mo¨hring [17]) with experimental data from the literature. The flow models are classified in context of the simplified equations of motion by emphasizing the main assumptions and simplifications in their derivation. Further on, for the one layer model, the use of the logarithmic law for the velocity distribution close to the wall is proposed instead of the classic 1/7 power law. The modified flow model is validated against experimental data for different parameter combinations, yielding better agreement for moderate inlet rotation. Finally numerical simulations have been performed in order to investigate the discrepancies between measured and calculated core rotation distributions for strong inlet swirl. It is supposed that the assumption of radial equilibrium in the core region is not necessarily appropriate for evaluation of the core rotation. Further on, it is clarified in which situations the tangential velocity component of the absolute velocity at the impeller outlet can be used as a boundary condition for the flow model.


2016 ◽  
Vol 6 (5) ◽  
pp. 75-77
Author(s):  
S.M. Dmitriev ◽  
◽  
D.V. D.V. Doronkov ◽  
D.V. Maksyanin ◽  
V.D. Sorokin ◽  
...  
Keyword(s):  

2003 ◽  
Author(s):  
Ayten S. Bakhtiyarova

In this paper we present the results of the 3-D simulations of the power law model fluid flow in rectangular cavity. FLOW-3D commercial, software (Flow-Simulations, Inc.) has been used to predict flow velocity distributions and pressure losses when non-Newtonian fluid flows through the square cavity.


Sign in / Sign up

Export Citation Format

Share Document