scholarly journals Reduced graphene oxide obtained using the spray pyrolysis technique for gas sensing

2019 ◽  
Vol 22 (1) ◽  
pp. 98-103 ◽  
Author(s):  
O. M. Slobodian ◽  
2021 ◽  
pp. 138897
Author(s):  
Suresh Sagadevan ◽  
J. Anita Lett ◽  
Getu Kassegn Weldegebrieal ◽  
Md Rokon ud Dowla Biswas ◽  
Won Chun Oh ◽  
...  

2016 ◽  
Vol 24 (25) ◽  
pp. 28290 ◽  
Author(s):  
Yi Xiao ◽  
Jianhui Yu ◽  
Long Shun ◽  
Shaozao Tan ◽  
Xiang Cai ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 2965-2970 ◽  
Author(s):  
Jiajia Song ◽  
Yanyan Wang ◽  
Feng Zhang ◽  
Yan Ye ◽  
Yanhua Liu ◽  
...  

2017 ◽  
Vol 240 ◽  
pp. 870-880 ◽  
Author(s):  
Yong Zhou ◽  
Xiaogang Lin ◽  
Yang Wang ◽  
Guoqing Liu ◽  
Xiangyi Zhu ◽  
...  

2019 ◽  
Vol 737 ◽  
pp. 136829 ◽  
Author(s):  
Ruiqin Peng ◽  
Yuanyuan Li ◽  
Tong Liu ◽  
Qing Sun ◽  
Pengchao Si ◽  
...  

2019 ◽  
Vol 30 (22) ◽  
pp. 224001 ◽  
Author(s):  
Vijendra Singh Bhati ◽  
D Sheela ◽  
Basanta Roul ◽  
Ramesh Raliya ◽  
Pratim Biswas ◽  
...  

2020 ◽  
Vol 826 ◽  
pp. 154169 ◽  
Author(s):  
Nguyen Van Hoang ◽  
Chu Manh Hung ◽  
Nguyen Duc Hoa ◽  
Nguyen Van Duy ◽  
Nguyen Van Toan ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 615 ◽  
Author(s):  
Chang Wang ◽  
Huan Wang ◽  
Dan Zhao ◽  
Xianqi Wei ◽  
Xin Li ◽  
...  

A novel hybrid structure sensor based on cobalt carbonate hydroxide hydrate (CCHH) and reduced graphene oxide (RGO) was designed for room temperature NH3 detection. This hybrid structure consisted of CCHH and RGO (synthesized by a one-step hydrothermal method), in which RGO uniformly dispersed in CCHH, being used as the gas sensing film. The resistivity of the hybrid structure was highly sensitive to the changes on NH3 concentration. CCHH in the hybrid structure was the sensing material and RGO was the conductive channel material. The hybrid structure could improve signal-to-noise ratio (SNR) and the sensitivity by obtaining the optimal mass proportion of RGO, since the proportion of RGO was directly related to sensitivity. The gas sensor with 0.4 wt% RGO showed the highest gas sensing response reach to 9% to 1 ppm NH3. Compared to a conventional gas sensor, the proposed sensor not only showed high gas sensing response at room temperature but also was easy to achieve large-scale production due to the good stability and simple synthesis process.


Sign in / Sign up

Export Citation Format

Share Document