scholarly journals Reduced graphene oxide for fiber-optic toluene gas sensing

2016 ◽  
Vol 24 (25) ◽  
pp. 28290 ◽  
Author(s):  
Yi Xiao ◽  
Jianhui Yu ◽  
Long Shun ◽  
Shaozao Tan ◽  
Xiang Cai ◽  
...  
2021 ◽  
pp. 138897
Author(s):  
Suresh Sagadevan ◽  
J. Anita Lett ◽  
Getu Kassegn Weldegebrieal ◽  
Md Rokon ud Dowla Biswas ◽  
Won Chun Oh ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 2965-2970 ◽  
Author(s):  
Jiajia Song ◽  
Yanyan Wang ◽  
Feng Zhang ◽  
Yan Ye ◽  
Yanhua Liu ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 543
Author(s):  
Jin Ho Kim ◽  
Seunghyeon Kim ◽  
Siwon Song ◽  
Taeseob Lim ◽  
Jae Hyung Park ◽  
...  

In this study, we developed a remote gamma-ray spectroscopy system based on a fiber-optic radiation sensor (FORS) that is composed of an inorganic scintillator coated with reduced graphene oxide (RGO) and a plastic optical fiber (POF). As a preliminary experiment, we measured the transmitted light intensities using RGO membranes of different thicknesses with different wavelengths of emitted light. To evaluate the FORS performance, we determined the optimal thickness of the RGO membrane and measured the amounts of scintillating light and gamma energy spectra using radioactive isotopes such as 60Co and 137Cs. The amounts of scintillating light from the RGO-coated inorganic scintillators increased, and the energy resolutions of the gamma-ray spectra were enhanced. In addition, the gamma-ray energy spectra were measured using different types of RGO-coated inorganic scintillators depending on the lengths of the POFs for remote gamma-ray spectroscopy. It was expected that inorganic scintillators coated with RGO in FORS can deliver improved performance, such as increments of scintillating light and energy resolution in gamma-ray spectroscopy, and they can be used to identify nuclides remotely in various nuclear facilities.


2017 ◽  
Vol 240 ◽  
pp. 870-880 ◽  
Author(s):  
Yong Zhou ◽  
Xiaogang Lin ◽  
Yang Wang ◽  
Guoqing Liu ◽  
Xiangyi Zhu ◽  
...  

2019 ◽  
Vol 737 ◽  
pp. 136829 ◽  
Author(s):  
Ruiqin Peng ◽  
Yuanyuan Li ◽  
Tong Liu ◽  
Qing Sun ◽  
Pengchao Si ◽  
...  

2019 ◽  
Vol 30 (22) ◽  
pp. 224001 ◽  
Author(s):  
Vijendra Singh Bhati ◽  
D Sheela ◽  
Basanta Roul ◽  
Ramesh Raliya ◽  
Pratim Biswas ◽  
...  

2020 ◽  
Vol 826 ◽  
pp. 154169 ◽  
Author(s):  
Nguyen Van Hoang ◽  
Chu Manh Hung ◽  
Nguyen Duc Hoa ◽  
Nguyen Van Duy ◽  
Nguyen Van Toan ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 615 ◽  
Author(s):  
Chang Wang ◽  
Huan Wang ◽  
Dan Zhao ◽  
Xianqi Wei ◽  
Xin Li ◽  
...  

A novel hybrid structure sensor based on cobalt carbonate hydroxide hydrate (CCHH) and reduced graphene oxide (RGO) was designed for room temperature NH3 detection. This hybrid structure consisted of CCHH and RGO (synthesized by a one-step hydrothermal method), in which RGO uniformly dispersed in CCHH, being used as the gas sensing film. The resistivity of the hybrid structure was highly sensitive to the changes on NH3 concentration. CCHH in the hybrid structure was the sensing material and RGO was the conductive channel material. The hybrid structure could improve signal-to-noise ratio (SNR) and the sensitivity by obtaining the optimal mass proportion of RGO, since the proportion of RGO was directly related to sensitivity. The gas sensor with 0.4 wt% RGO showed the highest gas sensing response reach to 9% to 1 ppm NH3. Compared to a conventional gas sensor, the proposed sensor not only showed high gas sensing response at room temperature but also was easy to achieve large-scale production due to the good stability and simple synthesis process.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sweejiang Yoo ◽  
Xin Li ◽  
Yuan Wu ◽  
Weihua Liu ◽  
Xiaoli Wang ◽  
...  

Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties ofrGOTA functionalized. Our results showrGOTA functionalizedonly selective to ammonia with excellent respond, recovery, respond time, and recovery times.rGOTA functionalizedelectrical resistance decreases upon exposure to NH3where we postulated that it is due to n-doping by TA and charge transfer betweenrGOTA functionalizedand NH3through hydrogen bonding. Furthermore,rGOTA functionalizedhinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.


Sign in / Sign up

Export Citation Format

Share Document