scholarly journals A vicious circle between oxidative stress and cytokine storm in acute respiratory distress syndrome pathogenesis at COVID-19 infection

2021 ◽  
Vol 93 (1) ◽  
pp. 18-29
Author(s):  
G. H. Meftahi ◽  
◽  
Z. Bahari ◽  
Z. Jangravi ◽  
M. Iman ◽  
...  

In early December 2019, the pandemic of coronavirus disease 2019 (COVID-19) began in Wuhan City, Hubei Province, China. Since then, it has propagated rapidly and turned into a major global crisis due to the high virus spreading. Acute respiratory distress syndrome (ARDS) is considered as a defining cause of the death cases. Cytokine storm and oxidative stress are the main players of ARDS development during respiratory virus infections. In this review, we discussed molecular mechanisms of a fatal vicious circle between oxidative stress and cytokine storm during COVID-19 infection. We also described how aging can inflame the vicious circle. Keywords: acute respiratory distress syndrome (ARDS), COVID-19, cytokine storm, oxidative stress

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ji Hoon Jang ◽  
Hang Jea Jang ◽  
Hyun-Kuk Kim ◽  
Jin Han Park ◽  
Hyo-Jung Kim ◽  
...  

Abstract Background Inhalation injury from smoke or chemical products and carbon monoxide poisoning are major causes of death in burn patients from fire accidents. Respiratory tract injuries from inhalation injury and carbon monoxide poisoning can lead to acute respiratory distress syndrome and cytokine storm syndrome. In the case of acute respiratory failure needing mechanical ventilation accompanied by cytokine storm, mortality is high and immediate adequate treatment at the emergency department is very important. Case presentation This report describes a case of acute respiratory distress syndrome and cytokine storm followed by carbon monoxide poisoning in a 34-year-old Korean male patient who was in a house fire, and was successfully treated by extracorporeal membrane oxygenation and direct hemoperfusion with polymyxin B-immobilized fiber column at emergency department. Conclusions To prevent mortality in acute respiratory distress syndrome with cytokine storm from inhalation injury and to promote a better prognosis, we suggest that early implication of extracorporeal membranous oxygenation along with direct hemoperfusion with polymyxin B-immobilized fiber column even at the emergency department should be considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Braira Wahid ◽  
Noshaba Rani ◽  
Muhammad Idrees

Abstract After wreaking havoc on a global level with a total of 5,488,825 confirmed cases and 349,095 deaths as of May 2020, severe acute respiratory syndrome coronavirus 2 is truly living up to the expectations of a 21st-century pandemic. Since the major cause of mortality is a respiratory failure from acute respiratory distress syndrome, the only present-day management option is supportive as the transmission relies solely on human-to-human contact. Patients suffering from coronavirus disease 2019 (COVID-19) should be tested for hyper inflammation to screen those for whom immunosuppression can increases chances of survival. As more and more clinical data surfaces, it suggests patients with mild or severe cytokine storms are at greater risk of failing fatally and hence these cytokine storms should be targets for treatment in salvaging COVID-19 patients.


2020 ◽  
Vol 5 (3) ◽  
pp. 197-201 ◽  
Author(s):  
Hesam Khodadadi ◽  
Évila Lopes Salles ◽  
Abbas Jarrahi ◽  
Fairouz Chibane ◽  
Vincenzo Costigliola ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 38-43 ◽  
Author(s):  
Tong Wang

Abstract Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an acute progressive respiratory failure caused by severe infection, trauma, shock, poisoning, inhaled harmful gas, acute pancreatitis, and pathological obstetrics. ALI and ARDS demonstrate similar pathophysiological changes. The severe stage of ALI is defined as ARDS. At present, a significant progress has been achieved in the study of the pathogenesis and pathophysiology of ALI/ARDS. Whether or not ALI/ARDS patients can recover depends on the degree of lung injury, extra-pulmonary organ damage, original primary disease of a patient, and adequacy in supportive care. Conservative infusion strategies and protective lung ventilation reduce ARDS disability and mortality. In this study, the pathogenesis of ALI/ARDS, lung injury, molecular mechanisms of lung repair, and conservative infusion strategies and pulmonary protective ventilation are reviewed comprehensively.


2020 ◽  
Vol 10 (4) ◽  
pp. 204589402096535
Author(s):  
Pratap Karki ◽  
Konstantin G. Birukov ◽  
Anna A. Birukova

Extracellular histones released from injured or dying cells following trauma and other severe insults can act as potent damage-associated molecular patterns. In fact, elevated levels of histones are present in human circulation in hyperinflammatory states such as acute respiratory distress syndrome and sepsis. The molecular mechanisms owing to histone-induced pathologies are at the very beginning of elucidating. However, neutralization of histones with antibodies, histone-binding or histone-degrading proteins, and heparan sulfates have shown promising therapeutic effects in pre-clinical acute respiratory distress syndrome and sepsis models. Various cell types undergoing necrosis and apoptosis or activated neutrophils forming neutrophil extracellular traps have been implicated in excessive release of histones which further augments tissue injury and may culminate in multiple organ failure. At the molecular level, an uncontrolled inflammatory cascade has been considered as the major event; however, histone-activated coagulation and thrombosis represent additional pathologic events reflecting coagulopathy. Furthermore, epigenetic regulation and chemical modifications of circulating histones appear to be critically important in their biological functions as evidenced by increased cytotoxicity associated with citrullinated histone. Herein, we will briefly review the current knowledge on the role of histones in acute respiratory distress syndrome and sepsis, and discuss the future potential of anti-histone therapy for treatment of these life-threatening disorders.


2009 ◽  
Vol 83 (14) ◽  
pp. 7062-7074 ◽  
Author(s):  
Barry Rockx ◽  
Tracey Baas ◽  
Gregory A. Zornetzer ◽  
Bart Haagmans ◽  
Timothy Sheahan ◽  
...  

ABSTRACT Several respiratory viruses, including influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV), produce more severe disease in the elderly, yet the molecular mechanisms governing age-related susceptibility remain poorly studied. Advanced age was significantly associated with increased SARS-related deaths, primarily due to the onset of early- and late-stage acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Infection of aged, but not young, mice with recombinant viruses bearing spike glycoproteins derived from early human or palm civet isolates resulted in death accompanied by pathological changes associated with ARDS. In aged mice, a greater number of differentially expressed genes were observed than in young mice, whose responses were significantly delayed. Differences between lethal and nonlethal virus phenotypes in aged mice could be attributed to differences in host response kinetics rather than virus kinetics. SARS-CoV infection induced a range of interferon, cytokine, and pulmonary wound-healing genes, as well as several genes associated with the onset of ARDS. Mice that died also showed unique transcriptional profiles of immune response, apoptosis, cell cycle control, and stress. Cytokines associated with ARDS were significantly upregulated in animals experiencing lung pathology and lethal disease, while the same animals experienced downregulation of the ACE2 receptor. These data suggest that the magnitude and kinetics of a disproportionately strong host innate immune response contributed to severe respiratory stress and lethality. Although the molecular mechanisms governing ARDS pathophysiology remain unknown in aged animals, these studies reveal a strategy for dissecting the genetic pathways by which SARS-CoV infection induces changes in the host response, leading to death.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ryo Nagasawa ◽  
Yu Hara ◽  
Kota Murohashi ◽  
Ayako Aoki ◽  
Nobuaki Kobayashi ◽  
...  

Abstract Background Oxidative stress plays an important role in acute lung injury, which is associated with the development and progression of acute respiratory failure. Here, we investigated whether the degree of oxidative stress as indicated by serum heme oxygenase-1 (HO-1) is clinically useful for predicting prognosis among the patients with acute respiratory distress syndrome (ARDS) and acute exacerbation of interstitial lung disease (AE-ILD). Methods Serum HO-1 levels of newly diagnosed or untreated ARDS and AE-ILD patients were measured at diagnosis. Relationships between serum HO-1 and other clinical parameters and 1 and 3-month mortality were evaluated. Results Fifty-five patients including 22 of ARDS and 33 of AE-ILD were assessed. Serum HO-1 level at diagnosis was significantly higher in ARDS patients than AE-ILD patients (87.8 ± 60.0 ng/mL vs. 52.5 ± 36.3 ng/mL, P <  0.001). Serum HO-1 correlated with serum total bilirubin (R = 0.454, P <  0.001) and serum LDH (R = 0.500, P <  0.001). In both patients with ARDS and AE-ILDs, serum HO-1 level tended to decrease from diagnosis to 2 weeks after diagnosis, however, did not normalized. Composite parameters including serum HO-1, age, sex, and partial pressure of oxygen in arterial blood/fraction of inspired oxygen (P/F) ratio for prediction of 3-month mortality showed a higher AUC (ARDS: 0.925, AE-ILDs: 0.892) than did AUCs of a single predictor or combination of two or three predictors. Conclusion Oxidative stress assessed by serum HO-1 is persistently high among enrolled patients for 2 weeks after diagnosis. Also, serum HO-1 levels at the diagnosis combined with age, sex, and P/F ratio could be clinically useful for predicting 3-month mortality in both ARDS and AE-ILD patients.


Sign in / Sign up

Export Citation Format

Share Document