scholarly journals THE NOBEL COMMITTEE CONTINUES TO PAY ITS DEBTS Some thoughts on the Nobel Prize in Physics for 2020

Author(s):  
Serge L. Parnovsky ◽  

The Nobel Prize in Physics in 2020 was awarded to the famous British physicist, mathematician, philosopher of science Roger Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity” as well as German astrophysicist Reinhard Genzel and American astronomer Andrea Ghez “for the discovery of a supermassive compact object at the center of our galaxy.”

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 664-668 ◽  
Author(s):  
Tuan Do ◽  
Aurelien Hees ◽  
Andrea Ghez ◽  
Gregory D. Martinez ◽  
Devin S. Chu ◽  
...  

The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.


Author(s):  
Purujit Malik

A black hole is a region of space from which nothing, not even light, can escape. According to the general theory of relativity[2], it starts existing when spacetime gets curved by a huge mass. There is a sphere around the black hole. If something goes inside the sphere, it can not leave. This sphere is called the event horizon. A black hole is black because it absorbs all the light that hits it. It reflects nothing, just like a perfect black body in thermodynamics. Under quantum mechanics, black holes have a temperature and emit Hawking radiation, which makes them slowly get smaller.Because black holes are very hard to see, people trying to see them look for them by the way they affect other things near them. The place where there is a black hole can be found by tracking the movement of stars that orbit somewhere in space. Or people can find it when gas falls into a black hole, because the gas heats up and is very bright[1].However besides all these theories we still do not know what a black hole and dark matter is because all these theories rely on the much physical aspect of things and not on a unified understanding of creation.


2012 ◽  
Vol 18 (3) ◽  
pp. 175-184
Author(s):  
Vo Van On

In this paper, based on the vector model for gravitational field we deduce an equation to determinate the metric of space-time. This equation is similar to equation of Einstein. The metric of space-time outside a static spherically symmetric body is also determined. It gives a small supplementation to the Schwarzschild metric in General theory of relativity but the singularity does not exist. Especially, this model predicts the existence of a new universal body after a black hole.


2008 ◽  
Vol 08 (02) ◽  
pp. L141-L153
Author(s):  
THEO M. NIEUWENHUIZEN

Within the Relativistic Theory of Gravitation it is shown that the equation of state p = ρ holds near the center of a black hole. For the stiff equation of state p = ρ − ρc the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range beyond the horizon. The solution is regular everywhere, with a specific shape at the origin. The gravitational redshift at the horizon remains finite but is large, z ~ 1023 M⊙/M. Time keeps its standard role also in the interior. The energy of the Schwarzschild metric, shown to be minus infinity in the General Theory of Relativity, is regularized in this setup, resulting in E = Mc2.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Bhanu Pratap Singh

The purpose of this article is not to present a popular history of mathematical physics nor even to display for the general reader some of the result of research in the history of science, Rather the intention is to explore one important aspect of the great scientific revaluation of recent times which proves the existence of Gravitational wave, predicted by Dr. Albert Einstein about a hundred years ago in his general theory of relativity. Gravitational waves are ripples in the fabric of space time caused by some of the most violent and energetic processes in the universe. They are produced by catastrophic events such as colliding Black hole as well as the collapse of stellar super nova.


2021 ◽  
Vol 52 (1) ◽  
pp. 12-14
Author(s):  
Roger Blandford

Black holes, a seemingly inevitable consequence of Einstein’s general theory of relativity and stellar and galactic evolution are being observed in many new ways with masses ranging from roughly three to ten billion solar masses. Their masses and spins determine how they power the most luminous objects in the universe and impact their environments.


2018 ◽  
Vol 27 (14) ◽  
pp. 1847020 ◽  
Author(s):  
Nikodem Popławski

Torsion is a geometrical object, required by quantum mechanics in curved spacetime, which may naturally solve fundamental problems of general theory of relativity and cosmology. The black-hole cosmology, resulting from torsion, could be a scenario uniting the ideas of the big bounce and inflation, which were the subject of a recent debate of renowned cosmologists.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 57
Author(s):  
Stanislav Komarov

The general problem of calculating of the propagation of electromagnetic radiation from particles or stars moving in the vicinity of a supermassive black hole is considered in geometrical optics approximation within the framework of the general theory of relativity. Different approaches that can be used to calculate certain characteristics of radiation, including redshift, the intensity and rotation of the plane of polarization, which have been presented in the literature are analysed herein. The inverse problem—the calculation of the parameters of the motion of the source (star or particle) from the data of the redshift, the intensity and the plane of polarization—is also considered.


1988 ◽  
Vol 155 (7) ◽  
pp. 517-527 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Leonid P. Grishchuk

Sign in / Sign up

Export Citation Format

Share Document