scholarly journals NUMERICAL ANALYSIS FOR NUSSELT NUMBER AND HEAT TRANSFER AUGMENTATION ON SOLAR AIR HEATER ROUGHENED WITH SQUARE RIB ROUGHNESS ON THE ABSORBER PLATE

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Amit Kumar ◽  
Apurba Layek

Heat transfer rate on solar air heater system is generally achieved by suitable modification of absorber plate surface with acceptable geometry of rib roughness. In this paper a numerical study is performed using CFD based computational analysis of heat transfer augmentation equipped with the square rib roughness created artificially on the absorber plate. The 2D analysis is performed using ANSYS 16.2 Code with RNG k-ε turbulence model to investigate the heat transfer and fluid flow characteristics. The augmentation of heat transfer on increase of Reynolds number enhance the Nusselt number which is referred as energy gain ratio with the use of rib roughness was examined and their relative evaluation has been plotted. The parameter which is considered for the range of analysis is taken as relative roughness pitch (P/e), relative roughness height (e/D) and the Reynolds numbers (Re) ranging from 3800-18000. The enhancement of heat transfers due to rib roughness on the absorber plate have been compared with those for smooth ducts for the same flow and thermal boundary condition to determine the energy gain ratio of solar air heater. The result obtained by the present investigation shows that the maximum value of energy gain ratio is found to be about 1.93 times the smooth duct for the studied range of parameters.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vipin B. Gawande ◽  
A. S. Dhoble ◽  
D. B. Zodpe

CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤P/e≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.


2018 ◽  
Vol 7 (1) ◽  
pp. 5-15
Author(s):  
Chander Kant ◽  
Prashant Kumar ◽  
Ankur Gill ◽  
Dhiraj Parkash Dhiman

A solar air heater is basically a heat exchanger, which intercepts the incident solar radiation, converts it into heat and finally transfers this heat to a working fluid for an end use system. The mode of air flowing in the ducts of a solar air heater is one of the most significant aspects concerned with solar air heater which dominantly affect. A double duct parallel flow artificially roughened solar air heater with three sides of the absorber plate is investigated in the current study. Unlike the conventional model of solar air heater with only one sided roughened absorber plate, a novel solar air heater with three artificially roughened absorber plate is used so that the surface area of the absorber plate is increased which ultimately increases the rate of heat transfer. Additionally, a double duct parallel flow arrangement through inner and outer duct of solar air heater is considered order to enhance the heat transfer rate. A numerical investigation of the heat transfer and friction factor characteristics of a double duct parallel flow three sided artificially roughened solar air heater has been carried out. A commercial finite volume CFD code ANSYS FLUENT is used to simulate turbulent air flow through artificial roughened solar air heater. Governing equations of the fluid flow and heat transfer i.e. Navier-Stokes equation and energy equation are solved with RNG k-ε turbulence model. Nine different configuration of square rib are studied with relative roughness pitch (P/e = 5-10) and relative roughness height (e/D = 0.03-0.06). The Reynold number of the flow is varied from 2500 to 16000.


Author(s):  
Nanjundappa Madhukeshwara ◽  
A Alhadhrami ◽  
Hassan A H Alzahrani ◽  
B H Prasanna

This study is to evaluate heat transmission and friction in a rectangular solar air heater with a V-shaped wire rib roughness on the absorber plate that operates in fully formed turbulent flow. Additionally, studies are performed to generate prediction equations for the average friction factor, Stanton number, and efficiency index. The Reynolds number [Formula: see text]–[Formula: see text], angle of attack [Formula: see text]20[Formula: see text]–90[Formula: see text]), relative roughness pitch [Formula: see text]–[Formula: see text], relative roughness height [Formula: see text]–[Formula: see text], and the aspect ratio [Formula: see text]–[Formula: see text] was varied. The efficiency index [Formula: see text] is commonly employed as a thermo-hydraulic performance metric. It is computed as [Formula: see text]. The wire roughness and airflow parameters [Formula: see text] are optimized to maximize heat transfer while retaining minimal friction losses. On the basis of resemblance criteria, average Stanton numbers, average Nusselt numbers, and even average friction factors are derived. The results are compared to those obtained with a smooth absorber duct under similar airflow circumstances in order to assess the increase in heat transfer coefficient and friction factor. The [Formula: see text], and [Formula: see text] have a significant influence on thermo–hydraulic performance, according to these studies. With [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], the optimal configuration geometry for wire roughness and solar air heater duct is identified.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anil Singh Yadav ◽  
J. L. Bhagoria

Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e=14.29) remains constant. The relative roughness height,e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shantanu Purohit ◽  
N. Madhwesh ◽  
K. Vasudeva Karanth ◽  
N. Yagnesh Sharma

This study presents an innovative idea to augment heat transfer to an air heater using helicoidal finned arrangement. A parametric analysis of the helicoidal shaped fin geometry is considered with helicoidal pitch ratio of 0.1666–0.3, fin diameter ratio of 1.75–2. For the placement of the fin beneath the absorber plate, longitudinal pitch ratio ranging from 0.0416 to 0.1666 are used. The flow Reynolds number used for the study ranges from 4800 to 25,000. The effects of helicoidal pitch ratio, wire diameter ratio and longitudinal pitch ratio on Nusselt number and friction factor have been discussed. It is seen from the analysis that there is a significant improvement in Nusselt number for the case of helicoidal fin of wire diameter ratio of 1 when compared to base model as well as straight fin model for the operating range of Reynolds number. It is also observed from the analysis that for the helicoidal fin configuration of helicoidal pitch ratio of 0.2333, friction factor appears to be moderate. Flow and roughness parameters for roughened solar air heater have been optimized using thermal-hydraulic enhancement factor (THEF). The study reveals that by the use of helicoidal fins, maximum enhancement in the Nusselt number is found to be 2.21 times when compared to the base model for longitudinal pitch ratio of 0.0416, helicoidal pitch ratio of 0.166 for a fixed wire diameter. The improvement obtained in performance corresponding to increased Nusselt number establishes the efficacy the helicoidal fin design for the absorber plate.


Author(s):  
Sheetal Kumar Jain ◽  
Ghanshyam Das Agrawal ◽  
Rohit Misra

Abstract In the present research, the thermohydraulic performance of a solar air heater having artificial roughness in the form of arc-shaped ribs with multiple gaps has been investigated experimentally and compared with that of a solar air heater having smooth absorber plate. The performance has been investigated in terms of enhancement in the Nusselt number and friction factor. Results of the present work have also been compared with previously published work. Reynolds number and arc angle (α) were varied from 3000 to 18,000 and 30 deg to 75 deg, respectively. Present roughness results in a higher rate of heat transfer from the absorber surface to air, but it also imposes a penalty in terms of the increased friction factor. Maximum enhancement in Nusselt number, friction factor, and thermohydraulic performance parameter for the roughened absorber surface is found to be 3.74, 2.69, and 2.75 times that of the smooth plate, respectively. Correlations of heat transfer and friction factor for proposed roughness have also been developed.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Digpal Kumar ◽  
B. Premachandran

Abstract In this paper, the details of a numerical study performed for the optimum fin arrangement in a solar air heater with a rectangular fin array attached to the bottom side of the absorber plate have been presented. Results have been presented for various fin sizes and spacing between the fins, while the heat transfer and fluid flow are directed by natural convection. An inclined rectangular channel similar to the dimensions of a typical solar air heater has been considered. Three different fin configurations, namely, continuous long fins for the whole length of the channel, in-line interrupted and staggered interrupted arrangements of fins, have been studied. The present analysis aims to identify the optimum configuration of the fin array for enhanced heat transfer. The spacing between the fins and the height of the fins are varied to obtain an optimum configuration. The numerical simulations are performed for heat flux (q″) ranging from 250 to 750 W/m2 on the absorber plate. The inclination angles of the channel (θ) have been maintained at 15 deg, 30 deg, and 45 deg from the horizontal plane. The results show that with the spacing between fins, S = 5.4 cm performs better in the case of longitudinal continuous fin arrangement. However, a fin spacing of 4.75 cm shows a higher heat transfer in the case of staggered fin configuration. In comparison with nine long uninterrupted fins, using the staggered arrangement with 15 × 10 fins saves up to 33% of fin material.


Sign in / Sign up

Export Citation Format

Share Document