scholarly journals VALIDATED MICROBIOLOGICAL ASSAY FOR JOSAMYCIN DETERMINATION IN ITS PHARMACEUTICAL FORMULATIONS

2020 ◽  
Vol 10 (1) ◽  
pp. 33-37
Author(s):  
Abdelghani Mahmoudi
2013 ◽  
Vol 49 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Flávia Angélica Másquio Fiorentino ◽  
Marcos Antonio Corrêa ◽  
Hérida Regina Nunes Salgado

Chlorhexidine (CHX) is a broad-spectrum antiseptic that is used in many topical pharmaceutical formulations. Because there is no official microbiological assay reported in the literature that is used to quantify CHX, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method for the dosage of chlorhexidine digluconate (CHX-D) in an aqueous solution. The assay is based on the inhibitory effect of CHX-D upon the strain of Staphylococcus aureus ATCC 25923, which is used as the test microorganism. The design 3x3 parallel-line model was used. The results were treated statistically by analysis of variance (ANOVA), and they were excellent in terms of linearity (r = 0.9999), presenting a significant regression between the zone diameter of growth inhibition and the logarithm of the concentration within the range of 0.5 to 4.5%. The results obtained were precise, having relative standard deviations (RSD) for intra-day and inter-day precision of 2.03% and 2.94%, respectively. The accuracy was 99.03%. The method proved to be very useful and appropriate for the microbiological dosage of CHX-D in pharmaceutical formulations; it might also be used for routine drug analysis during quality control in pharmaceutical industries.


2002 ◽  
Vol 29 (5) ◽  
pp. 957-961 ◽  
Author(s):  
A.R Breier ◽  
C.V Garcia ◽  
T.P Oppe ◽  
M Steppe ◽  
E.E.S Schapoval

2013 ◽  
Vol 49 (4) ◽  
pp. 753-762 ◽  
Author(s):  
Maria Luisa Manfio ◽  
Danielle Araújo Agarrayua ◽  
Jaison Carlosso Machado ◽  
Cleber Alberto Schmidt

Ceftriaxone (CFTX) sodium is a third-generation, broad-spectrum cephalosporin that is resistant to beta-lactamases. An alternative bioassay for the assessment of the potency of this drug in pharmaceutical formulations has not been previously reported. Thus, this paper reports the development and full validation of a 3 x 3 agar diffusion bioassay using a cylinder-plate method to quantify CFTX sodium in pharmaceutical samples. The strain Staphylococcus aureus ATCC 6538P was used as the test microorganism, and the results of the proposed bioassay displayed high linearity, precision, accuracy, specificity and robustness. All potency results were statistically analyzed using an analysis of variance (ANOVA) and were found to be linear (r=0.99999) in the range of 16-64 µg/mL, accurate (100.5%), and precise [repeatability: relative standard deviation (RSD)=1.4%; intermediate precision: between-day RSD=2.1% and between-analyst RSD=2.5%]. The specificity of the bioassay was determined by evaluating a degraded sample (50 ºC) at 0, 24 and 48 hours as compared against the results from the pharmacopeial liquid chromatography method for CFTX. The results validated the proposed microbiological assay, which allows reliable quantitation of CFTX in pharmaceutical samples. Moreover, it is a useful, simple and low-cost alternative method for monitoring the quality of this medicine.


2013 ◽  
Vol 36 (2) ◽  
pp. 99-103
Author(s):  
Omnia Albadawy ◽  
Amany Nafee ◽  
Momen Thabet ◽  
Mostafa El-Rehewy ◽  
Ahmed Ahmed

2006 ◽  
Vol 40 (2) ◽  
pp. 443-446 ◽  
Author(s):  
H.R.N. Salgado ◽  
C.C.G.O. Lopes ◽  
M.B.B. Lucchesi

Author(s):  
Vishal N Kushare ◽  
Sachin S Kushare

The present paper describes stability indicating high-performance thin-layer chromatography (HPTLC) assay method for Ozagrel in bulk drugs. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene: methanol: triethylamine (6.5: 4.0: 0.1 v/v/v). The system was found to give compact spot for Ozagrel (Rf value of 0.40 ± 0.010). Densitometric analysis of Ozagrel was carried out in the absorbance mode at 280 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.999 with respect to peak area in the concentration range 30 - 120 ng/spot. The developed HPTLC method was validated with respect to accuracy, precision, recovery and robustness. Also to determine related substance and assay determination of Ozagrel that can be used to evaluate the quality of regular production samples. The developed method can also be conveniently used for the assay determination of Ozagrel in pharmaceutical formulations. The limits of detection and quantitation were 4.069 and 12.332 ng/spot, respectively by height. Ozagrel was subjected to acid and alkali hydrolysis, oxidation, photochemical and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and heat conditions. This indicates that the drug is susceptible to acid, base hydrolysis, oxidation and heat. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of said drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Ozagrel in bulk drug and tablet formulation.


Author(s):  
Potdar S. S. ◽  
Karajgi S. R. ◽  
Simpi C. C. ◽  
Kalyane N. V.

The spectrophotometric method for estimation of CefpodoximeProxetil employed first derivative amplitude UV spectrophotometric method for analysis using methanol as solvent for the drug. CefpodoximeProxetil has absorbance maxima at 235nm and obeys Beer’s law in concentration range 10-50µg/ml with good linearity i.e. r2 about 0.999. The recovery studies established accuracy of the proposed method; result validated according to ICH guideline. Results were found satisfactory and reproducible. The method was successfully for evaluation of CefpodoximeProxetil in tablet dosage form without interference of common excipients.


Author(s):  
Abbas Shebeeb Al-kadumi ◽  
Sahar Rihan Fadhel ◽  
Mohammed Abdullah Ahmed ◽  
Luma Amer Musa

We proposed two simple, rapid, and convenient spectrophotometric methods are described for the determination of Amoxicillin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in first method) and colorimetric determination of the green colored solution for manganite ion at 610 nm formed after reaction of Amoxicillin with potassium permanganate as oxidant agent (in the second method) in basic medium. The working conditions of the methods were investigated and optimized. Beer's law plot showed a good correlation in the concentration range of 5-45 μg/ml. The detection limits and relative standared deviations were (2.573, 2.814 μg/ml) (2.137, 2.498) for the flame emission photometric method and (1.844, 2.016 μg/ml) (1.645,1.932) for colorimetric methods for capsules and suspensions respectively. The methods were successfully applied to the determination of Amoxicillin in capsules and suspensions, and the obtained results were in good agreement with the label claim. No interference was observed from the commonly encountered additives and expectancies.


Sign in / Sign up

Export Citation Format

Share Document