scholarly journals EFFECT OF CHITOSAN FORMULATIONS OF DIFFERENT BIOLOGICAL ORIGIN ON TOBACCO (NICOTIANA TABACUM L.) PR-GENES EXPRESSION

2020 ◽  
Vol 9 (6) ◽  
pp. 1141-1144 ◽  
Author(s):  
A. Dubin
Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 415 ◽  
Author(s):  
Xiaoming Gao ◽  
Xinru Wu ◽  
Guanshan Liu ◽  
Zenglin Zhang ◽  
Jiangtao Chao ◽  
...  

As the last stage of plant development, leaf senescence has a great impact on plant’s life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.


Author(s):  
Arne J. Aasen ◽  
Sven-Olof Almquist ◽  
Curt R. Enzell

Abstract35: two isomeric 5,6-Epoxy-3-hydroxy-7-megastigmen-9-ones from Nicotiana tabacum L.


Crop Science ◽  
1964 ◽  
Vol 4 (4) ◽  
pp. 349-353 ◽  
Author(s):  
T. J. Mann ◽  
J. A. Weybrew ◽  
D. F. Matzinger ◽  
J. L. Hall

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document