scholarly journals Characterization and Mapping of a Novel Premature Leaf Senescence Mutant in Common Tobacco (Nicotiana tabacum L.)

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 415 ◽  
Author(s):  
Xiaoming Gao ◽  
Xinru Wu ◽  
Guanshan Liu ◽  
Zenglin Zhang ◽  
Jiangtao Chao ◽  
...  

As the last stage of plant development, leaf senescence has a great impact on plant’s life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.

1996 ◽  
Vol 74 (6) ◽  
pp. 965-970 ◽  
Author(s):  
R. C. Fialho ◽  
J. Bücker

Specimens of Populus nigra L. cv. Loenen exhibit premature leaf senescence when exposed for a few weeks to realistic air pollution. In this study, the changes in levels of foliar carbohydrates and myo-inositol (MI) due to 30 ± 1 nL/L O3 + 12 ± 1 nL/L SO2 from the onset of exposure to the occurrence of premature abscission is presented. Petioles and laminae of the 12 oldest leaves were separately analysed on days 0, 4, 8, 12, 16, 20, 22, and 32 of continuous exposure, which was performed in open-top chambers (OTC). On days 8 to 12, clearly prior to yellowing (starting on day 22), total nonstructural carbohydrates (TNC; starch + raffinose + sucrose + glucose + fructose + MI) in the fumigated laminae exceeded that in controls by about 30%. This increase was due to higher amounts of different soluble forms, while starch remained unaltered. From day 20 onwards, the level of TNC in the fumigated laminae progressively fell below that in controls. This decrease was due to a progressive decline in starch, which had started on day 16 and was dominating, although glucose and raffinose increased significantly. In the petioles, starch, sucrose, and glucose decreased because of fumigation with the occurrence of leaf yellowing, while raffinose increased. In contrast, MI in the petioles progressively accumulated directly on exposure until leaf yellowing occurred. The results are discussed in terms of the "general adaption syndrome" of H. Selye (1936. Nature (London), 138: 32). The marked MI response in petioles is concluded to be an early indication of phytorelevant O3 + SO2 pollution. Keywords: air pollution, carbohydrates, myo-inositol, pigments, Populus nigra L., senescence, stress.


1968 ◽  
Vol 10 (2) ◽  
pp. 232-234
Author(s):  
Bronius Povilaitis ◽  
D. R. Cameron

A new mutation for chlorophyll-deficiency in Nicotiana tabacum L., called progressive veinbanding, was found in the field planting of the flue-cured tobacco variety Hicks Broadleaf. The mutant follows monogenic inheritance of a single recessive gene upon which the normal allele exhibits complete dominance. There was a definite association of the mutant type with the M—chromosome of the sylvestris genome in tests against the monosomic series.


Author(s):  
Allah Jurio Khaskheli ◽  
Waqas Ahmed ◽  
Muhammad Ibrahim Khaskheli ◽  
Zeeshan Ahmad ◽  
Juan Hong Li

<p class="abstract"><strong>Background:</strong> Senescence is the final developmental phase of a leaf which starts with nutrient salvage and ends with cell death. The first visible event during senescence is leaf yellowing, which typically starts at the leaf margins and progresses to the interior of the leaf blade. Though, regulators of senescence adopt a range of physiological and developmental mechanisms which undergo senescence of plant.</p><p class="abstract"><strong>Methods:</strong> Leaves of different species were collected from the green house, and then rinsed several times with sterilized distilled water. For discs of leaves, two same sized leaves were collected and made the same sized discs. The samples were infiltrated with specific senescence inhibitor. The discs then kept in distilled water and placed under condition at 25<sup>0 </sup>C. Observed the phenotypes at two days interval, molecular based analysis was perfumed at 8<sup>th</sup> day of infiltration.  </p><p class="abstract"><strong>Results:</strong> In this study, innate senescence approach comparison to inhibitor based senescence has been performed in order to check its consequences on leaves of different crops such as; cauliflower, apple, tobacco, rose and Arabidopsis. Arabidopsis and apple have resulted in a narrative phenotype with high level of ion leakage. While in case of rose and cauliflower, the phenotype was characterized with yellow fading of leaves. Interestingly, in the tobacco<em> </em>plants, intense yellowing of leaves developed along bottom. Further, in order to confirm the efficiency and pattern of senescence, we had also assessed the changes occurred during leaf senescence via ion leakage and chlorophyll content, expression of SAG12 (a senescence associated gene) and (PSA) photosynthetic associated genes expression as markers.</p><p><strong>Conclusions:</strong> It has been noted that progression of leaf senescence is a very critical and important factors affecting plant growth and development. It can be stated that initiation of leaves senescence can be controlled by using specific inhibitor.</p>


2021 ◽  
Author(s):  
Zhiming Chen ◽  
Yongsheng Wang ◽  
Rongyu Huang ◽  
Zesen Zhang ◽  
Jinpeng Huang ◽  
...  

Abstract Background: The normal metabolism of transitory starch in leaves plays an important role in ensuring photosynthesis, delaying senescence and maintaining high yield in crops. OsCKI1 (casein kinase I1) plays crucial regulatory roles in multiple important physiological processes, including root development, hormonal signaling and low temperature-treatment adaptive growth in rice; however, its potential role in regulating temporary starch metabolism or premature leaf senescence remains unclear. To reveal the molecular regulatory mechanism of OsCKI1 in rice leaves, physiological, transcriptomic and proteomic analyses of leaves of the mutant lses1 (leaf starch excess and senescence 1), allelic to osckI1, and its wild-type variety (WT) were performed. Results: Phenotypic identification and physiological measurements showed that the lses1 mutant exhibited starch excess in the leaves and an obvious leaf tip withering phenotype as well as high ROS and MDA contents, low chlorophyll content and protective enzyme activities compared to WT. Transcriptomic and proteomic analyses showed that the correlations of most genes at the transcription and translation levels were limited. However, the changes of several important genes related to carbohydrate metabolism and apoptosis at the mRNA and protein levels were consistent. The protein-protein interaction (PPI) network might play accessory roles in promoting premature senescence of lses1 leaves. Comprehensive transcriptomic and proteomic analysis indicated that multiple key genes/proteins related to starch and sugar metabolism, apoptosis and ABA signaling exhibited significant differential expression. Abnormal increase in temporary starch was highly correlated with the expression of starch biosynthesis-related genes, which might be the main factor that causes premature leaf senescence and changes in multiple metabolic levels in leaves of lses1. In addition, significant up regulation of four proteins associated with ABA accumulation and signaling were detected in the lses1 mutant, suggesting that ABA may involve in multiple metabolic regulation via LSES1/OsCKI1 and the formation of mutant phenotype in lses1 leaves.Conclusion: The current study established the high correlation between the changes in physiological characteristics and mRNA and protein expression profiles in lses1 leaves, and emphasized the positive effect of excessive starch on accelerating premature leaf senescence. The expression patterns of genes/proteins related to starch biosynthesis and ABA signaling were analyzed via transcriptomes and proteomes, which provided a novel direction and research basis for the subsequent exploration of the regulation mechanism of temporary starch and apoptosis via LSES1/OsCKI1 in rice.


Planta ◽  
2000 ◽  
Vol 211 (4) ◽  
pp. 510-518 ◽  
Author(s):  
Céline Masclaux ◽  
Marie-Hélène Valadier ◽  
Norbert Brugière ◽  
Jean-François Morot-Gaudry ◽  
Bertrand Hirel

Genomics ◽  
2020 ◽  
Vol 112 (5) ◽  
pp. 3075-3088
Author(s):  
Shengjiang Wu ◽  
Yushuang Guo ◽  
Heren Issaka Joan ◽  
Yonggao Tu ◽  
Muhammad Faheem Adil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document