scholarly journals ID2019 Functional analysis of human type 2 diabetic adipose tissue-derived mesenchymal stem cells

2017 ◽  
Vol 4 (S) ◽  
pp. 52
Author(s):  
Thuy Nhu Trinh

Background: Stem cell therapy has recently shown promise in the prevention of diabetic complications due to its regenerative potential. The possible applications of human diabetic adipose tissue-derived mesenchymal stem cells (dAT-MSCs) in cell therapy are limited because their characteristics are still not fully understood. Aims: This study aimed to characterize dAT-MSCs in vitro and to investigate the potential application of dAT-MSCs in wound healing. Materials and Methods: dAT-MSCs were characterized under normoxic and hypoxic conditions in vitro and evaluated wound healing capacity in the ischemic flap mouse model. Results: Early growth response factor-1 (EGR-1) and its target genes were highly expressed in dAT-MSCs in comparison to nAT-MSCs, resulting in increasing of genes and protein associated with cell adhesion, insulin resistance, and impaired wound healing. Interestingly, under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) can bind to the EGR-1 promoter in dAT-MSCs, but not in nAT-MSCs. The effects of EGR-1 were inhibited by shEGR-1 and PD98059. Mice injected with shEGR-1- dAT-MSCs were improved their wound healing capacity. Furthermore, we found that human nAT-MSC-derived microvesicles (nMVs) could improve dAT-MSC function by altering miRNA and mRNA expressions, which enhanced their migration ability in vitro and wound healing capacity in the ischemic flap mouse model. Conclusion: Our study suggests that dAT-MSCs may contribute to delay wound healing. Interrupting the expression of EGR-1 in dAT-MSCs or transfecting nMVs to dAT-MSCs may be a useful treatment for chronic wounds in diabetic patients.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


Cell Medicine ◽  
2017 ◽  
Vol 9 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
Yasuma Yoshizumi ◽  
Hiroshi Yukawa ◽  
Ryoji Iwaki ◽  
Sanae Fujinaka ◽  
Ayano Kanou ◽  
...  

Cell therapy with adipose tissue-derived stem cells (ASCs) is expected to be a candidate for the treatment of fulminant hepatic failure (FHF), which is caused by excessive immune responses. In order to evaluate the therapeutic effects of ASCs on FHF, the in vitro and in vivo immunomodulatory effects of ASCs were examined in detail in the mouse model. The in vitro effects of ASCs were examined by assessing their influence on the proliferation of lymphomononuclear cells (LMCs) stimulated with three kinds of mitogens: phorbol 12-myristate 13-acetate (PMA) plus ionomycin, concanavalin A (ConA), and lipopolysaccharide (LPS). The proliferation of LMCs was efficiently suppressed in a dose-dependent manner by ASCs in the cases of PMA plus ionomycin stimulation and ConA stimulation, but not in the case of LPS stimulation. The in vivo effects of transplanted ASCs were examined in the murine FHF model induced by ConA administration. The ALT levels and histological inflammatory changes in the ConA-administered mice were apparently relieved by the transplantation of ASCs. The analysis of mRNA expression patterns in the livers indicated that the expressions of the cytokines such as Il-6, Il-10, Ifn-γ, and Tnf-α, and the cell surface markers such as Cd3γ, Cd4, Cd8α, Cd11b, and Cd11c were downregulated in the ASC-transplanted mice. The immunomodulatory and therapeutic effects of ASCs were confirmed in the mouse model both in vitro and in vivo. These suggest that the cell therapy with ASCs is beneficial for the treatment of FHF.


2016 ◽  
Vol 473 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Nhu Thuy Trinh ◽  
Toshiharu Yamashita ◽  
Tran Cam Tu ◽  
Toshiki Kato ◽  
Kinuko Ohneda ◽  
...  

2019 ◽  
Vol 71 (5) ◽  
pp. 1571-1581 ◽  
Author(s):  
A.R. Rocha ◽  
Y.K.C. Leite ◽  
A.S. Silva ◽  
A.M. Conde Júnior ◽  
C.R.M. Costa ◽  
...  

ABSTRACT There is a growing interest in the study of unspecialized mesenchymal stem cells, for there are still some discussions about their in vitro behavior. Regenerative medicine is a science undergoing improvement which develops treatments as cell therapy using somatic stem cells. In several studies, adipose tissue is presented as a source of multipotent adult cells that has several advantages over other tissue sources. This study aimed to characterize and evaluate the tagging of mesenchymal stem cells from the agoutis adipose tissue (Dasyprocta prymonolopha), with fluorescent intracytoplasmic nanocrystals. Fibroblast cells were observed, plastic adherent, with extended self-renewal, ability to form colonies, multipotency by differentiation into three lineages, population CD90 + and CD45 - expression, which issued high red fluorescence after the tagging with fluorescent nanocrystals by different paths and cryopreserved for future use. It is possible to conclude that mesenchymal stem cells from agouti adipose tissue have biological characteristics and in vitro behavior that demonstrate its potential for use in clinical tests.


2016 ◽  
Vol 242 (10) ◽  
pp. 1079-1085 ◽  
Author(s):  
Ignazio Barbagallo ◽  
Giovanni Li Volti ◽  
Fabio Galvano ◽  
Guido Tettamanti ◽  
Francesca R Pluchinotta ◽  
...  

Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.


2021 ◽  
pp. 581-590
Author(s):  
Huu-Phuong Mai ◽  
Nhu-Thuy Trinh ◽  
Vong Binh Long ◽  
Nguyen Trong Binh ◽  
Dang-Quan Nguyen ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. C885-C896 ◽  
Author(s):  
Jianming Guo ◽  
Haidi Hu ◽  
Jolanta Gorecka ◽  
Hualong Bai ◽  
Hao He ◽  
...  

We have previously shown that bone marrow-derived mesenchymal stem cells (BMSC) accelerate wound healing in a diabetic mouse model. In this study, we hypothesized that adipose tissue-derived stem cells (ADSC), cells of greater translational potential to human therapy, improve diabetic wound healing to a similar extent as BMSC. In vitro, the characterization and function of murine ADSC and BMSC as well as human diabetic and nondiabetic ADSC were evaluated by flow cytometry, cell viability, and VEGF expression. In vivo, biomimetic collagen scaffolds containing murine ADSC or BMSC were used to treat splinted full-thickness excisional back wounds on diabetic C57BL/6 mice, and human healthy and diabetic ADSC were used to treat back wounds on nude mice. Wound healing was evaluated by wound area, local VEGF-A expression, and count of CD31-positive cells. Delivery of murine ADSC or BMSC accelerated wound healing in diabetic mice to a similar extent, compared with acellular controls ( P < 0.0001). Histological analysis showed similarly increased cellular proliferation ( P < 0.0001), VEGF-A expression ( P = 0.0002), endothelial cell density ( P < 0.0001), numbers of macrophages ( P < 0.0001), and smooth muscle cells ( P < 0.0001) with ADSC and BMSC treatment, compared with controls. Cell survival and migration of ADSC and BMSC within the scaffolds were similar ( P = 0.781). Notch signaling was upregulated to a similar degree by both ADSC and BMSC. Diabetic and nondiabetic human ADSC expressed similar levels of VEGF-A ( P = 0.836) in vitro, as well as in scaffolds ( P = 1.000). Delivery of human diabetic and nondiabetic ADSC enhanced wound healing to a similar extent in a nude mouse wound model. Murine ADSC and BMSC delivered in a biomimetic-collagen scaffold are equivalent at enhancing diabetic wound healing. Human diabetic ADSC are not inferior to nondiabetic ADSC at accelerating wound healing in a nude mouse model. This data suggests that ADSC are a reasonable choice to evaluate for translational therapy in the treatment of human diabetic wounds.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document