scholarly journals ID: 1038 Hydrothermal synthesis of carbon nanodots from millets for cancer cells imaging

2017 ◽  
Vol 4 (S) ◽  
pp. 116
Author(s):  
Quang Ngo Khoa ◽  
Tran Thi Xuan Thuy ◽  
Che Thi Cam Ha

We presented a green, simple and economical method to synthesize carbon nanodots (C-dots) from millets using hydrothermal synthesis route. The obtained C-dots have average diameter ranging from 6 to 8 nm. Optical measurements showed the formation of hydroxyl, carbonyl/carboxyl, amino functional groups on the particle surfaces, resulting in their high hydrophilicity and bioconjugation. After treatment with C-dots, human cervical and lung cancer cells became bright and exhibited multicolor fluorescence under different excitation wavelength. The achievement demonstrated potential applications of fluorescent C-dots in the field of biomedical application, especially in diagnostic disease techniques.

MRS Advances ◽  
2019 ◽  
Vol 4 (3-4) ◽  
pp. 249-254
Author(s):  
Ngo Khoa Quang ◽  
Che Thi Cam Ha

ABSTRACTWe presented a green and simple method to synthesize carbon nanodots (C-dots) from millets using hydrothermal synthesis route for the first time. The obtained C-dots have average diameter ranging from 6 to 10 nm. Optical measurements showed the insight into the formation of functional groups on the particle surfaces, resulting in their good water solubility and bioconjugation. After treatment with C-dots, small subpopulation of the human cervical tumor cells became bright and exhibited multicolor fluorescence under different excitation wavelength. The achievement demonstrated potential applications of fluorescent C-dots in the field of biomedical application.


2021 ◽  
Author(s):  
Ngo Khoa Quang ◽  
Nguyen Ngoc Hieu ◽  
Vo Van Quoc Bao ◽  
Vo Thi Phuoc ◽  
Le Xuan Diem Ngoc ◽  
...  

We presented a low-cost and simple method to synthesize carbon nanodots (CDs) from waste wine cork using hydrothermal synthesis.  The structural and optical properties of the CDs are characterized by TEM, FTIR, Raman, UV-Vis absorption, and photoluminescence (PL) spectra. The analysis results indicated the average diameter of CDs ⁓ 6.2 ± 2.7 nm. Optical measurements showed the phenomenon of excitation-dependent PL and the formation of functional groups on the surface of the particles. CDs with a quantum yield of 1.54% was calculated using quinine sulfate as reference. Furthermore, a probe of wine cork-derived CDs in bioimaging has been successfully applied in living mesenchymal stem cells (MSCs). After treatment with CDs, MSCs exhibited fluorescence including green, yellow, and red colors under the excitation wavelengths in the range 330–385 nm, 450–480 nm, and 510–550 nm, respectively. The achievement demonstrated potential applications of fluorescent CDs in the field of the fluorescent image.


2018 ◽  
Vol 6 (36) ◽  
pp. 5775-5780 ◽  
Author(s):  
Wenbo Cheng ◽  
Jun Xu ◽  
Zhenzhen Guo ◽  
Dawei Yang ◽  
Xifeng Chen ◽  
...  

N,S co-doped carbon nanodots are prepared and utilized in a facile fluorescent cytosensor.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yu-Yu Aung ◽  
Aswandi Wibrianto ◽  
Jefry S. Sianturi ◽  
Desita K. Ulfa ◽  
Satya. C. W. Sakti ◽  
...  

2011 ◽  
Vol 396-398 ◽  
pp. 1151-1156
Author(s):  
Wen Yuan Wu ◽  
Chun Wei Shi ◽  
Xue Bian

Micro- and mesoporous composite molecular sieves enable to achieve grades distribution of pore sizes and appropriate collocation of acidity,which have potential applications in catalysis and adsorption of large molecules.This review focus on some of the most recent results during the last decades.The techniques applied to synthesize different micro-mesoporous composite molecular sieves includes single template, dual template, crystallization of mesoporous walls, alkaline desilication, vapor-phase transport synthesis,and microwave radiation hydrothermal synthesis.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 87
Author(s):  
D BALAJ ◽  
C SARALA RUBI ◽  
N G. RENGANATHAN

Attractive nanoparticles have been broadly considered on account of their potential applications as complexity operators in attractive reverberation imaging (MRI) of tumors, cell and DNA partition, attractively guided medication conveyance, tumor hyperthermia. Among the attractive oxides, magnetite nanoparticles are most appropriate because of their low danger and great attractive properties which may be used in drug delivery. Magnetite nanoparticles were synthesized using FeCl3 and FeSO4 as precursors and characterized for size and shape using non-contact AFM.  The formation of magnetite was confirmed by XRD pattern. The elemental composition of the obtained phase was determined using EDAX. In this work, we are aiming to develop drug loaded biopolymer Magnetite nanoparticles for biomedical application. Our main objective is to synthesize and characterize Magnetite (Fe3O4) nanoparticles.  


2021 ◽  
Author(s):  
Dong-Lin Yang ◽  
Ya-jun Zhang ◽  
Liu-jun He ◽  
Chun-sheng Hu ◽  
Li-xia Gao ◽  
...  

Abstract Demethylzeylasteral (T-96), a pharmacologically active triterpenoid monomer extracted from Tripterygiumwilfordii Hook F (TWHF), has been reported to exhibit anti-neoplastic effect on several types of cancer cells. However,whether it has the anti-tumour capability in human Prostate cancer (CaP)cells and what’s the precise regulatory mechanisms underlying the anti-proliferation effect of T-96 on human CaP. In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Furthermore, mechanistic investigation indicated that through inducing endoplasmic reticulum (ER) stress caused by intracellular accumulation of reactive oxygen species (ROS), T-96 significantly promoted autophagy initiation while blocked the autophagic flux and finally caused extrinsic apoptosis in CaP cells, implying that ER stress induced byT-96 initiated caspase dependent apoptosis to inhibit CaP cells. Moreover, as a novel lethal ER stress inducer, T-96 was capable to enhance the sensitivity of CaP cells to chemotherapeutic drug cisplatin. Taken together, our data implied that T-96 is a novel ER stress and autophagy modulator, and has the potential applications for CaP therapy in clinic.


2005 ◽  
Vol 44 (6) ◽  
pp. 893 ◽  
Author(s):  
Roel Kassies ◽  
Aufried Lenferink ◽  
Ine Segers-Nolten ◽  
Cees Otto

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tao Zhang ◽  
Xiufeng Xiao

Hydroxyapatite (HAp) has been synthesized by a hydrothermal treatment in the presence of a Gemini cationic surfactant. This process is a new strategy of synthesis and mainly consists of two parts, i.e., an ordinary hydrothermal treatment and a liquid-solid-solution reaction (LSS strategy). Crystalline HAp nanorods or nanogranules with length of 50-180 nm and width of 30-40 nm were produced by ordinary hydrothermal treatment. By contrary, HAp spheres with a 3D architecture were fabricated with Gemini cationic surfactant by LSS strategy. For Gemini cationic surfactant concentration of 0.05%, spherical HAp particles with an average diameter of 1.7 μm were obtained.


2020 ◽  
Vol 13 (04) ◽  
pp. 2040005
Author(s):  
Evgeny Karpushkin ◽  
Ekaterina Kharochkina ◽  
Vladimir Sergeyev ◽  
Marat Gallyamov

We have demonstrated that variation of the precursor concentration during hydrothermal synthesis of carbon nanodots is an efficient mean to tune the yield of the products keeping their optical properties the same. Moreover, we found that the nature of the precursor determined the sensitivity and selectivity of detection of metal ions in the solution via quenching the fluorescence.


Sign in / Sign up

Export Citation Format

Share Document