THE HANDLING OF SOYA ALPHA-GALACTOSIDES BY A NORMAL AND A GALACTOSEMIC CHILD

PEDIATRICS ◽  
1965 ◽  
Vol 36 (2) ◽  
pp. 231-235
Author(s):  
Richard Gitzelmann ◽  
Salvatore Auricchio

1. No alpha-galactosidase activity in homogenates of human small intestinal mucosa was demonstrated either with stachyose, raffinose, or melibiose. 2. In a healthy child, oral raffinose and melibiose loads failed to produce changes in blood glucose, blood galactose, or red cell galactose-1-phosphate. Trace amounts of either saccharide were excreted in the urine. Following the raffinose load, diarrhea occurred and raffinose and melibiose as well as their hydrolysis products were found in the feces. 3. In a galactosemic patient, red cell galactose-1-phosphate rose as expected after ingestion of 2 gm of galactose. No such rise was seen after administration of equivalent and of double equivalent amounts of stachyose. Prolonged dietary supplementation with raffinose did not significantly alter non-fasting erythrocyte galactose-1-phosphate. 4. It is concluded that soybean formulas are generally safe for galactosemic infants; however, caution is advised for patients suffering from diarrhea.

2020 ◽  
Vol 60 (16) ◽  
pp. 1894
Author(s):  
Huishi Yan ◽  
Wenwei Gao ◽  
Qinghong Li ◽  
Hongquan Li ◽  
Ruirong Hao

Context Grapeseed procyanidins (GSP) are widely recognised to have potential biological properties, and dietary supplementation with GSP could reduce diarrhoea incidence in weaned piglets. Aims This trial was conducted to investigate the effect of GSP on small intestinal mucosa morphology and small intestinal development in weaned piglets. Methods Seventy-two weaned piglets were randomly allocated into four dietary groups with three replicate pens per group and six piglets per pen. Each group received one of the following diets: a basal maize–soybean meal diet; or basal diet supplemented with 50, 100 or 150 mg GSP/kg. Small intestinal mucosa morphology and the expression of genes involved in improving small intestinal development were determined. Key results Morphological observations obtained by optical microscopy showed that the villus height of the duodenum and ileum increased in all groups receiving GSP, significantly (P < 0.05) so in the group receiving 100 mg GSP/kg compared with the control group. Crypt depth of the duodenum and ileum in the groups receiving 100 and 150 mg GSP/kg decreased compared with the control group. Similarly, the crypt depth of the jejunum in the group receiving 100 mg GSP/kg was significantly (P < 0.05) lowered. Moreover, the villus height/crypt depth ratio of each small intestinal segment in the group receiving 100 mg GSP/kg increased significantly (P < 0.01). Morphological observations obtained by scanning electron microscopy indicated that dietary supplementation with GSP was favourable for growth of small intestinal villi. Specifically, the villi of the small intestine in the group receiving 100 mg GSP/kg were most closely aligned, most uniform in size and clearest in structure. Furthermore, dietary supplementation with GSP increased the expression of genes encoding epidermal growth factor receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor in the duodenum, the group receiving 100 mg GSP/kg showing a significant (P < 0.05) increase. Conclusions Dietary supplementation with GSP could improve small intestinal mucosa morphology and promote small intestinal development. Dietary supplementation of 100 mg GSP/kg could be recommended for weaned piglets. Implications Dietary supplementation with GSP generated a beneficial role in small intestinal health in weaned piglets.


2009 ◽  
Vol 102 (9) ◽  
pp. 1285-1296 ◽  
Author(s):  
Maud Le Gall ◽  
Mélanie Gallois ◽  
Bernard Sève ◽  
Isabelle Louveau ◽  
Jens J. Holst ◽  
...  

Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11–12 d) weaning and SB before and after weaning (for 35–36 d). Growth performance, feed intake and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P < 0·05). The feed intake was higher in pigs supplemented with SB before or after weaning (P < 0·05). SB provided before weaning improved post-weaning faecal digestibility (P < 0·05) while SB after weaning decreased ileal and faecal digestibilities (P < 0·05). Gastric digesta retention was higher when SB was provided before weaning (P < 0·05). Post-weaning administration of SB decreased the activity of three pancreatic enzymes and five intestinal enzymes (P < 0·05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0·05). In conclusion, the pre-weaning SB supplementation was the most efficient to stimulate body growth and feed intake after weaning, by reducing gastric emptying and intestinal mucosa weight and by increasing feed digestibility.


1984 ◽  
Vol 259 (4) ◽  
pp. 2452-2456 ◽  
Author(s):  
M C Blaufuss ◽  
J I Gordon ◽  
G Schonfeld ◽  
A W Strauss ◽  
D H Alpers

2021 ◽  
Vol 9 (3) ◽  
pp. 547
Author(s):  
Daniel Sánchez ◽  
Iva Hoffmanová ◽  
Adéla Szczepanková ◽  
Věra Hábová ◽  
Helena Tlaskalová-Hogenová

The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document