Effect of grapeseed procyanidins on small intestinal mucosa morphology and small intestinal development in weaned piglets

2020 ◽  
Vol 60 (16) ◽  
pp. 1894
Author(s):  
Huishi Yan ◽  
Wenwei Gao ◽  
Qinghong Li ◽  
Hongquan Li ◽  
Ruirong Hao

Context Grapeseed procyanidins (GSP) are widely recognised to have potential biological properties, and dietary supplementation with GSP could reduce diarrhoea incidence in weaned piglets. Aims This trial was conducted to investigate the effect of GSP on small intestinal mucosa morphology and small intestinal development in weaned piglets. Methods Seventy-two weaned piglets were randomly allocated into four dietary groups with three replicate pens per group and six piglets per pen. Each group received one of the following diets: a basal maize–soybean meal diet; or basal diet supplemented with 50, 100 or 150 mg GSP/kg. Small intestinal mucosa morphology and the expression of genes involved in improving small intestinal development were determined. Key results Morphological observations obtained by optical microscopy showed that the villus height of the duodenum and ileum increased in all groups receiving GSP, significantly (P < 0.05) so in the group receiving 100 mg GSP/kg compared with the control group. Crypt depth of the duodenum and ileum in the groups receiving 100 and 150 mg GSP/kg decreased compared with the control group. Similarly, the crypt depth of the jejunum in the group receiving 100 mg GSP/kg was significantly (P < 0.05) lowered. Moreover, the villus height/crypt depth ratio of each small intestinal segment in the group receiving 100 mg GSP/kg increased significantly (P < 0.01). Morphological observations obtained by scanning electron microscopy indicated that dietary supplementation with GSP was favourable for growth of small intestinal villi. Specifically, the villi of the small intestine in the group receiving 100 mg GSP/kg were most closely aligned, most uniform in size and clearest in structure. Furthermore, dietary supplementation with GSP increased the expression of genes encoding epidermal growth factor receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor in the duodenum, the group receiving 100 mg GSP/kg showing a significant (P < 0.05) increase. Conclusions Dietary supplementation with GSP could improve small intestinal mucosa morphology and promote small intestinal development. Dietary supplementation of 100 mg GSP/kg could be recommended for weaned piglets. Implications Dietary supplementation with GSP generated a beneficial role in small intestinal health in weaned piglets.

2021 ◽  
Vol 7 ◽  
Author(s):  
Zhilong Tian ◽  
Xiaodan Wang ◽  
Yehui Duan ◽  
Yue Zhao ◽  
Wenming Zhang ◽  
...  

This study was conducted to investigate the effects of dietary supplementation with different types of Bacillus subtilis (B. subtilis) on the growth and gut health of weaned piglets. A total of 160 piglets were randomly assigned into four groups: control group (a basal diet), BS-A group (a basal diet supplemented with B. subtilis A at 1 × 106 CFU/g feed), BS-B group (a basal diet supplemented with B. subtilis B at 1 × 106 CFU/g feed), and BS-C group (a basal diet supplemented with B. subtilis C at 1 × 106 CFU/g feed). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, blood plasma and intestinal tissues and digesta samples were collected to determine plasma cytokine concentrations, intestinal morphology, gut microbiota community and metabolic activity, and the expression of genes related to gut physiology and metabolism. The results showed that dietary B. subtilis supplementation improved (P < 0.05) the body weight and average daily gain (in BS-B and BS-C groups) of weaned piglets and decreased (P < 0.05) the diarrhea rates (in BS-A, BS-B, and BS-C groups). In the intestinal morphology analysis, B. subtilis supplementation improved (P < 0.05) the size of villus height and villus height to crypt depth ratio in the ileum of weaned piglets. Firmicutes, Bacteroidetes, and Tenericutes were the most dominant microflora in piglets' colon whatever the trial group and time of analysis. Dietary BS-C supplementation increased (P < 0.05) the relative abundances of Anaerovibrio and Bulleidia and decreased (P < 0.05) the relative abundances of Clostridium and Coprococcus compared with the control group. In addition, dietary B. subtilis supplementation increased (P < 0.05) the indicators of intestinal health, including plasma levels of interleukin (IL)-2 and IL-10, as well as the colonic levels of short-chain fatty acids. Furthermore, dietary B. subtilis supplementation also up-regulated (P < 0.05) the expression of genes involved in metabolic pathways related to intestinal microbiota maturation. In conclusion, these findings suggest that a diet containing BS-B or BS-C can efficiently promote growth performance, decrease diarrhea incidence, and ameliorate several indicators of intestinal health through the modulation of gut microbiota composition and metabolic activity in weaned piglets.


2020 ◽  
Author(s):  
Shiqi Chen ◽  
Ning Liu ◽  
Dongbo Li ◽  
Haibo Dou ◽  
Quanjin Liu ◽  
...  

Abstract Background: Early-weaned in Rex rabbits and other animals is associated with the development and immunity of intestine. This article was aimed to investigate the potential benefits of a dietary supplementation, modified Si-jun-zi granule (M-SJZG), on enhancing immunity of small intestinal mucosa and promoting intestinal development of weaned Rex rabbits. Results: In the present study, we found that dietary supplementation with 2% modified Si-jun-zi granule decreased the diarrhea frequency and mortality due to early-weaned, and significantly increased the average daily gain; the length and relative weight of intestine; the concentration of immunoglobulin in serum and SIgA in intestinal mucus. Additionally, the activity of lipase was raised by dietary Si-jun-zi granule addition. However the activities of ALT, ALP and AST in serum were obviously decreased. Compared with the un-supplementation control group, the ratio of villi length to crypt depth and the expression of tight junction protein(zonula occludens-1, Claudin-1 and Occludin) and Glucose transporter (re-combinant Sodium/Glucose co-transporter 1 and recombinant Glucose transporter 2) in jejunum were raised. In addition, Moreover early development of intestine and the injury of intestinal mucosa induced by early-weaning also could be improved.Conclusions: This study indicated that modified Si-jun-zi granule has protective effects on diarrhea induced by early-weaning through enhancing immunity of small intestine mucosa and promoting intestinal development.


2019 ◽  
Author(s):  
Xiaodan Wang ◽  
Zhilong Tian ◽  
Yue Zhao ◽  
Wenming Zhang ◽  
Zhanbin Wang ◽  
...  

Abstract This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus on the intestinal health of weaned piglets. We randomly assigned 120 piglets to three groups; a control group (basal diet), a probiotics group (supplemented with 4 × 109 CFU/g Bacillus licheniformis-B. subtilis mixture; BLS mix), and an antibiotics group (supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21, and 42 of the trial, intestine and digesta samples were collected to determine the intestinal morphology, gut microbiota and metabolites, and the expression of genes related to gut health. The results showed that the BLS mix decreased the jejunum crypt depth, increased the ileum villus height, and increased the jejunum and ileum villus height to crypt depth ratio. The BLS mix also increased the expression levels of E-cadherin and Occludin in the colon and pro-inflammatory cytokines and TLR4 in ileum and colon. The BLS mix also increased Simpson’s diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but it decreased the relative abundances of Blautia, and Clostridium. Collectively, these findings suggested that dietary BLS mix supplementation efficaciously promotes intestinal health through the modulation of gut microbiota in weaned piglets.


PEDIATRICS ◽  
1965 ◽  
Vol 36 (2) ◽  
pp. 231-235
Author(s):  
Richard Gitzelmann ◽  
Salvatore Auricchio

1. No alpha-galactosidase activity in homogenates of human small intestinal mucosa was demonstrated either with stachyose, raffinose, or melibiose. 2. In a healthy child, oral raffinose and melibiose loads failed to produce changes in blood glucose, blood galactose, or red cell galactose-1-phosphate. Trace amounts of either saccharide were excreted in the urine. Following the raffinose load, diarrhea occurred and raffinose and melibiose as well as their hydrolysis products were found in the feces. 3. In a galactosemic patient, red cell galactose-1-phosphate rose as expected after ingestion of 2 gm of galactose. No such rise was seen after administration of equivalent and of double equivalent amounts of stachyose. Prolonged dietary supplementation with raffinose did not significantly alter non-fasting erythrocyte galactose-1-phosphate. 4. It is concluded that soybean formulas are generally safe for galactosemic infants; however, caution is advised for patients suffering from diarrhea.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 422 ◽  
Author(s):  
Li ◽  
Zhang ◽  
Liu ◽  
Yang ◽  
He ◽  
...  

To investigate the effects of the ratio of insoluble fiber to soluble fiber (ISF:SF) on sow performance and piglet intestinal development, we randomly assigned 64 gilts to four treatments comprising diets with the same level of dietary fiber, but different ISF:SF values of 3.89 (T1), 5.59 (T2), 9.12 (T3), and 12.81 (T4). At birth and weaning, six piglets per treatment at each phase were slaughtered for sampling. As ISF:SF increased, the mean piglet body weight (BW) at weaning and piglet BW gain, which were all significantly higher in T1 and T2 compared with T3 and T4 (p < 0.05), showed a linear decrease (p < 0.05); the crypt depth of the jejunum in weaned piglets linearly increased, whereas the duodenal weight, jejunal villus height, and villus height/crypt depth in newborn piglets and enzymatic activity of lactase, sucrase, and maltase linearly decreased (p < 0.05). No differences were observed in the yield and composition of milk (p > 0.05). Moreover, when the ISF:SF was 3.89 in gestation diets, higher piglet BW at weaning occurred, possibly because the ISF:SF affected development and enzymatic activity in the small intestine—effects related to digestion and absorption of nutrients—and consequently enhanced piglet BW gain.


2017 ◽  
Vol 62 (No. 1) ◽  
pp. 15-21
Author(s):  
X. Yue ◽  
L. Hu ◽  
X. Fu ◽  
M. Lv ◽  
X. Han

The effects of dietary chitosan-copper chelate (CS-Cu) on growth performance, diarrhea, intestinal morphology and epithelial cell apoptosis in weaned piglets was investigated. One hundred and sixty Duroc × Landrace × Yorkshire weanling barrows with an average body weight of 7.75 kg were randomly assigned to one of the following dietary treatments: (1) control, (2) 100 mg Cu/kg diet from CuSO<sub>4</sub>, (3) 100 mg Cu/kg diet from CuSO<sub>4</sub> mixed with chitosan (CuSO<sub>4</sub>+CS), (4) 100 mg Cu/kg diet from CS-Cu. The feeding trial lasted for 30 days. The results showed that the pigs receiving a diet containing CS-Cu had higher average daily gain and lower diarrhea incidence than the pigs receiving dietary CuSO<sub>4</sub> and CuSO<sub>4</sub>+CS. Villus height and the ratio of villus height/crypt depth in duodenum, jejunum, and ileum were higher and crypt depth was lower in CS-Cu treated pigs than in pigs fed dietary CuSO<sub>4 </sub>or CuSO<sub>4</sub>+CS. An apparent decrease of ileal epithelial cell apoptosis in pigs fed CS-Cu diet was found. The activities of antioxidant enzymes were higher in pigs fed dietary CS-Cu than in those fed other diets. The results indicated that dietary CS-Cu showed better biological and physiological function in improving small intestinal morphology and reducing diarrhea incidence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Lei Liu ◽  
Changguang Lin ◽  
...  

Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P &lt; 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P &lt; 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P &lt; 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P &lt; 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P &lt; 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P &lt; 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P &lt; 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.


2020 ◽  
Vol 11 ◽  
Author(s):  
Han Liu ◽  
Congmin Wang ◽  
Xueling Gu ◽  
Jing Zhao ◽  
Cunxi Nie ◽  
...  

The study investigated the impact of dietary montmorillonite on the growth performance, intestinal mucosal barrier, and microbial community in weaned piglets with control group (CON) and dietary supplementation of 0.2% montmorillonite (0.2% M). Compared with the CON group, 0.2% M feed in the diet increased the average daily gain (ADG) on days 15–35 and day 1–35 and the average daily feed intake on days 1–35 (ADFI) (0.05 &lt; P &lt; 0.1). Besides, higher villus height of the duodenum and jejunum and lower crypt depth of duodenum and colon were revealed in the 0.2% M group than in the CON group (P &lt; 0.05). Moreover, the V/C (ratio of the villus height and crypt depth) in the 0.2% M group was increased compared to that in the CON group both from the duodenum and ileum (P &lt; 0.05). The relative mRNA expression of mucin-1, ITGB1 (β1-integrins), and PKC (protein kinase C) of ileum in the 0.2% M group were upregulated (P &lt; 0.05) compared to that in the CON group. The digesta sample of ileum from piglets in the 0.2% M group contained greater (P &lt; 0.05) intestinal bacterial diversity and abundances of probiotics, such as Streptococcus, Eubacterium_rectale_group, and Lactobacillus, which could promote the synthesis of carbon-containing biomolecules. Overall, dietary supplementation of 0.2% M was shown to have a tendency to improve the growth performance of weaned piglets and may enhance their intestinal mucosal barrier function via altering the gut microbiota.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 301 ◽  
Author(s):  
Ivana Prakatur ◽  
Maja Miskulin ◽  
Mirela Pavic ◽  
Ksenija Marjanovic ◽  
Valerija Blazicevic ◽  
...  

The aim of this study was to determine the influence of dietary supplementation with propolis and bee pollen on the intestinal morphology and absorptive surface areas of chickens. Two hundred day-old Ross 308 chickens (100 male and 100 female) were equally allocated into five groups. Throughout the whole study, the control group of chickens was fed with a basal diet, while the experimental groups of chickens were fed with the same diet supplemented with propolis and bee pollen: P1 = 0.25 g of propolis/kg + 20 g of bee pollen/kg; P2 = 0.5 g of propolis/kg; P3 = 1.0 g of propolis/kg; P4 = 20 g of bee pollen/kg. The duodenal villi of chickens from all experimental groups were significantly higher and wider (p < 0.001), while their duodenal villi crypts were significantly deeper (p < 0.001) in comparison with these parameters in chickens from the control group. The villus height to crypt depth ratio, as well as the absorptive surface areas of broiler chickens, were significantly increased (p < 0.001) in experimental groups of chickens in comparison with the control group. These findings suggest that dietary supplementation with propolis and bee pollen has a beneficial effect on broilers chickens’ intestinal morphophysiology.


Sign in / Sign up

Export Citation Format

Share Document