The Blood Pressure Cuff Controversy

PEDIATRICS ◽  
1978 ◽  
Vol 61 (1) ◽  
pp. 161-161
Author(s):  
Myron L. Cohen ◽  
Harold Alexander ◽  
Leonard Steinfeld

In a letter (Pediatrics 59:138, January 1977) Bailie noted that the sizes of cuffs normally available for the measurement of blood pressure in infants and children are inadequate to insure that measuremnents will accurately reflect the true arterial blood pressure. In general the use of an improperly sized cuff will lead to an overestimation of the arterial blood pressure. In recent studies,1,2 we have shown that several criteria must be fulfilled in the design of an occlusive cuff in order to insure that the indirect pressure accurately reflects the arterial pressure.

2015 ◽  
Vol 309 (10) ◽  
pp. R1273-R1284 ◽  
Author(s):  
Jennifer Magnusson ◽  
Kevin J. Cummings

The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.


2021 ◽  
pp. 1-8
Author(s):  
Yi-Tse Hsiao ◽  
Yun-Wen Peng ◽  
Pin Huan Yu

Monitoring blood pressure helps a clinical veterinarian assess various conditions in birds. Blood pressure is not only a bio-indicator of renal or cardiovascular disease but is also a vital indicator for anesthesia. Anesthetic- and sedation-related mortality is higher in birds than dogs or cats. The traditional method of blood pressure measurement in mammals mainly relies on indirect methods. However, indirect blood pressure measurement is not reliable in birds, making the direct method the only gold standard. Although an arterial catheter can provide continuous real-time arterial pressure in birds, the method requires technical skill and is limited by bird size, and is thus not practical in birds with circulatory collapse. Intra-osseous (IO) blood pressure is potentially related to arterial pressure and may be a much easier and safer technique that is less limited by animal size. However, the relationship between IO pressure and arterial blood pressure has not been established. This study used mathematical methods to determine the relationship between IO pressure and arterial blood pressure. The Granger causality (G.C.) theory was applied in the study and used to analyze which pressure signal was leading the other. Our findings suggest that IO pressure is G.C. by arterial blood pressure; thus, the use of IO pressure measurements as an alternative to arterial blood pressure measurement is a rational approach.


2001 ◽  
Vol 91 (5) ◽  
pp. 2351-2358 ◽  
Author(s):  
K. M. Gallagher ◽  
P. J. Fadel ◽  
S. A. Smith ◽  
K. H. Norton ◽  
R. G. Querry ◽  
...  

This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol ( P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.


2016 ◽  
Vol 124 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Judith A. R. van Waes ◽  
Wilton A. van Klei ◽  
Duminda N. Wijeysundera ◽  
Leo van Wolfswinkel ◽  
Thomas F. Lindsay ◽  
...  

Abstract Background Postoperative myocardial injury occurs frequently after noncardiac surgery and is strongly associated with mortality. Intraoperative hypotension (IOH) is hypothesized to be a possible cause. The aim of this study was to determine the association between IOH and postoperative myocardial injury. Methods This cohort study included 890 consecutive patients aged 60 yr or older undergoing vascular surgery from two university centers. The occurrence of myocardial injury was assessed by troponin measurements as part of a postoperative care protocol. IOH was defined by four different thresholds using either relative or absolute values of the mean arterial blood pressure based on previous studies. Either invasive or noninvasive blood pressure measurements were used. Poisson regression analysis was used to determine the association between IOH and postoperative myocardial injury, adjusted for potential clinical confounders and multiple comparisons. Results Depending on the definition used, IOH occurred in 12 to 81% of the patients. Postoperative myocardial injury occurred in 131 (29%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 87 (20%) patients without IOH (P = 0.001). After adjustment for potential confounding factors including mean heart rates, a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury (relative risk, 1.8; 99% CI, 1.2 to 2.6, P &lt; 0.001). Shorter cumulative durations (less than 30 min) were not associated with myocardial injury. Postoperative myocardial infarction and death within 30 days occurred in 26 (6%) and 17 (4%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 12 (3%; P = 0.08) and 15 (3%; P = 0.77) patients without IOH, respectively. Conclusions In elderly vascular surgery patients, IOH defined as a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury.


2002 ◽  
Vol 93 (4) ◽  
pp. 1466-1470 ◽  
Author(s):  
William H. Cooke ◽  
Rong Zhang ◽  
Julie H. Zuckerman ◽  
Jian Cui ◽  
Thad E. Wilson ◽  
...  

Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60° head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N G-monomethyl-l-arginine (l-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after l-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05–0.15 Hz) and high-frequency (HF; 0.15–0.35 Hz) ranges.l-NMMA infusion increased supine BP (systolic, 109 ± 4 vs. 122 ± 3 mmHg, P = 0.03; diastolic, 68 ± 2 vs. 78 ± 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Beforel-NMMA, HUT decreased HF R-R variability ( P= 0.03), decreased transfer function gain (LF, 12 ± 2 vs. 5 ± 1 ms/mmHg, P = 0.007; HF, 18 ± 3 vs. 3 ± 1 ms/mmHg, P = 0.002), and increased LF BP variability ( P < 0.0001). After l-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without l-NMMA. Increased supine BP afterl-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.


1960 ◽  
Vol 15 (1) ◽  
pp. 23-24 ◽  
Author(s):  
G. E. Burch ◽  
N. DePasquale

Simultaneous digital plethysmographic and brachial arterial pressure recordings in 11 normal subjects at rest in bed in a comfortable atmosphere showed that the spontaneous variations in digital volume (alpha and beta deflections) were independent of variations in arterial blood pressure. This indicates that the regulation of the caliber of the peripheral blood vessels as well as the spontaneous variations in the volume of the digital vessels is not passively produced by fluctuations in arterial blood pressure, including the Traube-Hering waves, but must be controlled by different centers and pathways of the sympathetic nervous system. Submitted on July 27, 1959


2004 ◽  
Vol 16 (06) ◽  
pp. 322-330 ◽  
Author(s):  
JIA-JUNG WANG ◽  
SHING-HONG LIU ◽  
CHING-IUAN CHERN ◽  
JUI-HSAING HSIEH

Traditional arterial tonometry permits noninvasive and continuous recording of the arterial pressure waveform, by applanating a superficial artery supported by a bone. In the paper, we present an arterial tonometer to simultaneously register the blood pressure waveform and the arterial time-varying volume. The tonometer consisted mainly of a chamber filled with a conductive fluid, a flexible diphragm in touch with an artery, and a pressure sensor used to detect the underlying arterial pressure. In addition, four electrodes were in parallel diposed in the chamber, two of them were triggered with a constant-current source, and the voltage difference between the other two inner electrodes was assocated with the amount of change in the arterial volume. The pressure calibration curve performed with a mercury sphygmomanometer showed a fairly linear relationship (r = 0.998) between the tonometer's chamber pressure and the voltage output of the pressure-sensing circuit. The volume calibration was carried out with vessel-like cylinders of various diameters and a linear relationship (r = 0.884) of the change in vessel volume to the voltage output of the volume-sensing circuit was obtained. Clinical testing results revealed that the noninvasive blood pressure measurement with the tonometer was appreciably consistent with the invasive measurement with the catheter-tipped pressure transducer. In summary, the arterial applanation tonometer developed may be used to reliably determine the full arterial blood pressure waveform and the change in the arterial volume, and to make the wall compliance assessment of a superficial artery possible.


2006 ◽  
Vol 291 (1) ◽  
pp. H482-H483 ◽  
Author(s):  
Harald M. Stauss ◽  
Julia A. Moffitt ◽  
Mark W. Chapleau ◽  
Francois M. Abboud ◽  
Alan Kim Johnson

The following is the abstract of the article discussed in the subsequent letter: The function of the arterial baroreflex has traditionally been assessed by measurement of reflex changes in heart rate (HR) or sympathetic nerve activity resulting from experimenter-induced manipulation of arterial blood pressure (the Oxford method, also termed the pharmacological method). However, logistical and flexibility limitations of this technique have promoted the development of new methods for assessing baroreflex function such as the evaluation of changes in spontaneous arterial pressure and HR. Although this new spontaneous method has been validated in dogs and humans, it has not been rigorously tested in rats. In the present study, the method of correlating spontaneous changes in systolic blood pressure and HR was evaluated in resting, normotensive Sprague-Dawley rats. This technique was found to be neither reliable nor valid under the conditions employed in the present protocol. We also tested a variation of the spontaneous method that evaluates particular sequences of data during which arterial pressure and pulse interval are changing in the same direction for at least three consecutive heart beats (the sequence method). The sequence method did not provide extra reliability or validity over the spontaneous method. We conclude that due to the restricted range of variability obtained by measuring spontaneous blood pressure fluctuations, the spontaneous and sequence techniques do not provide data that are comparable to the traditional method of assessing HR changes triggered by arterial blood pressure increases and decreases induced by vasoactive drugs. However, it is possible that surgical stress obscured the relationship between blood pressure and HR, and therefore additional studies are needed to determine whether the spontaneous and sequence methods can be applied to rats during different behavioral states.


PEDIATRICS ◽  
1978 ◽  
Vol 62 (3) ◽  
pp. 326-330
Author(s):  
Robert F. Reder ◽  
Ivan Dimich ◽  
Myron L. Cohen ◽  
Leonard Steinfeld

The systemic arterial blood pressures obtained in infants and children utilizing three indirect measuring devices—Arteriosonde 1010, Infrasonde 3000, Pedisphyg system—were compared to each other and to intra-arterial pressure measured directly. The results indicate that Arteriosonde performs considerably better than Infrasonde; nevertheless, the Arteriosonde values are often only approximations of true systole and diastole. The Pedisphyg system yields accurate, reproducible values for systole; however, the system is not designed to determine diastolic blood pressure.


Sign in / Sign up

Export Citation Format

Share Document