thaumetopoea processionea
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Yevhen F. Suprunenko ◽  
Matthew D. Castle ◽  
Cerian R. Webb ◽  
Julia Branson ◽  
Andrew Hoppit ◽  
...  

2021 ◽  
Author(s):  
Claire Beverley

Abstract T. processionea, commonly known as the oak processionary moth, is a major pest in many European countries and threatens the health of oak trees. The common and scientific names of T. processionea refer to the behaviour of the larvae to form long processions. The larvae cause severe defoliation, reducing the viability of oak trees. They also pose a risk to both human and animal health because they shed poisonous hairs, which can result in severe allergic reactions, amongst other health problems. The moth is native to central and southern Europe but is now present in almost all European countries and also in parts of the Middle East. EPPO issued a Pest Risk Analysis in 2007 for the UK in response to infestations of the species in Europe from 2006. At this time, infestations of the moth were observed on a range of oak (Quercus) species in London. The adult males are strong fliers and can fly long distances, such as from France to the UK (Evans, 2007). Host plants of this pest include many species of deciduous Quercus, and to a much lesser degree, Betula, Carpinus, Castanea, Corylus, Crataegus, Robinia and Fagus; plants commonly found in forests, woods or ornamental plantations in the UK, for example (Evans, 2007). Therefore, areas where these plants are present and offer a suitable climate for pest development are likely to be under threat from T. processionea. Various pines have been reported as hosts, but such records are suspect and are probably the result of confusion with the pine processionary (Thaumetopoea pityocampa).


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 267 ◽  
Author(s):  
Jetske de Boer ◽  
Jeffrey Harvey

Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken ‘nests’ that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 199 ◽  
Author(s):  
Mariella Marzano ◽  
Bianca Ambrose-Oji ◽  
Clare Hall ◽  
Darren Moseley

Oak processionary moth (Thaumetopoea processionea) or OPM was accidentally introduced into London on imported oak trees and now poses a threat to the future of oak in the urban landscape. Early attempts at eradication of the moth failed and significant resources have since been spent by government on monitoring and controlling OPM (through the use of insecticides or bio-pesticides) as it spreads into new areas. OPM is regulated in the UK to minimize risk of new introductions and reduce spread. Surveying for OPM and issuing of statutory notices for control is based on a geographical system of core, control and protected zones. While OPM will defoliate the trees leaving them vulnerable to other pests and diseases and stress factors, the caterpillars can also harm people and animals via tiny urticating hairs with the potential for dermatological or respiratory impacts. However, the biggest threat to the iconic British oak may be that the perceived risks associated with OPM, and costs of management may lead land managers to fell their oak trees, and not plant oak in the future. There is a need to better understand awareness, risk perceptions and decision-making around OPM management. We use a conceptual framework to explore decision-making and the trade-offs between the social, economic and ecological values associated with oak trees, and assessment of risk related to both the moth and control options. Twenty nine interviews were conducted in two London boroughs and across Greater London and in some surrounding counties covering a range of land types (e.g., parks, school grounds, amenity areas and private gardens) with infested or non-infested oak. We found a lack of evidence of human health impacts from OPM although land managers were concerned about public duty of care and potential reputational damage if they do not manage OPM. To address the challenges of dealing with OPM, land managers were taking a risk-based approach and managing OPM where it posed the highest potential risk to people. Respondents expressed strong emotional attachments to oak but it also has high biodiversity value which can lead to difficult decisions about management options. A risk-based approach moves beyond a ‘one-size-fits-all’ control method and focuses available resources where they are most needed and socially acceptable. An approach that allows for multiple values and perspectives on risk may provide a more sustainable long-term option for OPM management to ensure the future of oak in the city.


2019 ◽  
Author(s):  
Thomas Damestoy ◽  
Xoaquín Moreira ◽  
Hervé Jactel ◽  
Elena Valdes-Correcher ◽  
Christophe Plomion ◽  
...  

AbstractThe presence of heterospecific neighbours can affect damage caused by pest insects on focal plants. However, how plant neighbours influence herbivore performance is poorly understood. We tested the independent and interactive effects of tree species identity and tree neighbour type (conspecific vs. heterospecific) on the performance of a major oak pest, the oak processionary moth larvae (OPM, Thaumetopoea processionea) fed on Quercus robur and Q. petraea. We performed a factorial greenhouse experiment in which we grew two oak saplings per pot, either from the same species or from both species. We quantified growth and mortality of OPM larvae, leaf phenolic compounds, C:N ratio and bud phenology. OPM larvae performed significantly better on Q. petraea than on Q. robur, regardless of plant neighbour type. Phenolic compounds and C:N, but not phenology, differed between oak species and neighbour species identity. Only bud phenology had a significant effect on OPM performance, which was better when young larvae had access to recently unfolded leaves, regardless of oak species and neighbour identity. Although oak neighbour identity altered the expression of leaf traits, this effect had no measurable consequences on OPM performance. However, further studies should consider the effect of oak species neighbour on OPM preferences for either Q. robur or Q. petraea, in pure and mixed stands, before translating current results into recommendations for forest management.Author ContributionTD and BC conceived the study and acquired the data. TD performed experiment and analysed the data. EV, TD and XM performed the chemical analyses. TD and BC drafted the first version of the manuscript and all authors wrote the final version of the manuscript.TD, BC conceived and designed research. TD performed experiment and analysed data. EV, TD, XM performed the chemical analyses. TD, BC wrote the manuscript. All authors read and approved the manuscript.AM and DB conceived and designed research. AM and BB conducted experiments. GR contributed new reagents or analytical tools. AM, BB and GR analysed data. AM wrote the manuscript. All authors read and approved the manuscript.


2019 ◽  
Vol 112 (6) ◽  
pp. 2686-2694
Author(s):  
Benjamin M L Leroy ◽  
Martin M Gossner ◽  
Florian P M Lauer ◽  
Ralf Petercord ◽  
Sebastian Seibold ◽  
...  

Abstract Large-scale field studies on the ecological effects of aerial forest spraying often face methodological challenges, such as insufficient funding, difficult logistics, and legal obstacles. The resulting routine use of underpowered designs could lead to a systematic underestimation of insecticide effects on nontarget arthropod communities. We tested the use of an Unmanned Aerial Vehicles (UAVs) for experimental insecticide applications at tree level to increase replication in cost-efficient way. We assessed the effects of two forestry insecticides, diflubenzuron (DFB) and tebufenozide (TBF), on the oak defoliator, Thaumetopoea processionea (Linnaeus) (Lepidoptera: Thaumetopoeidae), and on nontarget, tree-living Lepidoptera. Individual trees were sprayed with either insecticide or left unsprayed, in a fully factorial design involving 60 trees. Caterpillars fallen from tree crowns were sampled as a measure of mortality, while caterpillar feeding activity was monitored by collecting frass droppings. Both DFB and TBF led to greater mortality of T. processionea and lower Lepidoptera feeding activity than control levels. TBF caused measurable mortality in nontarget groups, affecting Macrolepidoptera more strongly than Microlepidoptera, while there was no significant side effect of DFB. The high treatment efficacy against the target pest indicates that UAV technology is well-suited for the application of insecticide in forests. We detected distinct responses to different insecticides among nontarget groups and suggest there is an influence of application timing and biological traits in these differences, emphasizing the need for more ecologically orientated risk assessment. UAV-supported designs can be used to link laboratory bioassays and large-scale experiments, allowing for more comprehensive assessments of insecticide effects in forest ecosystems.


Sign in / Sign up

Export Citation Format

Share Document