scholarly journals Effect of drought on photosynthetic apparatus, activity of antioxidant enzymes, and productivity of modern winter wheat varieties

2019 ◽  
Vol 10 (1) ◽  
pp. 16-25 ◽  
Author(s):  
V. V. Morgun ◽  
O. O. Stasik ◽  
D. A. Kiriziy ◽  
O. G. Sokolovska-Sergiienko

The response of modern winter wheat varieties to soil drought was studied with aim of phenotyping their drought tolerance characteristics and identification of the most informative indices that may be suitable for use in breeding programs. Plants of winter bread wheat (Triticum aestivum L.) varieties Podolyanka, Khurtovyna, Vinnychanka and Prydniprovska were grown in a pot experiment. The soil moisture for control plants was maintained at a level of 70% of field capacity (FC) throughout the vegetative stage. At the flowering, watering of the treated plants was stopped to reduce the soil moisture to a level of 30% FC and then this soil moisture level was maintained for 10 days. After that, the irrigation of the treated plants was restored to the level of control. It was found that in the flag leaf under drought condition, the chlorophyll content, net CO2 assimilation rate, and transpiration rate decreased, while the leaf water deficit, the ratio of photorespiration to CO2 assimilation, and the activity of chloroplasts antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) increased. The ten-day drought significantly reduced the grain yield from the plant. Calculations of the relative changes in the physiological parameters of treated plants as compared to the control were the most informative for the differentiation of varieties for drought tolerance. Relative changes in the content of chlorophyll in the flag leaf under drought and reduction in the total biomass of the plant closely correlated with a decrease in grain productivity (r = 0.92 and r = 0.96 respectively). There was also a significant correlation of grain productivity with a decrease in the NAR measured in the period of drought (r = 0.68). Therefore, the maintenance of the photosynthetic function of plants under conditions of insufficient water supply plays a determinant role in reducing the grain productivity losses. The relative changes in the chlorophyll content and CO2 assimilation rate in plants subjected to drought as compared to control may be used as markers of drought tolerance of genotypes for genetic improvement of wheat by conventional breeding and biotechnological methods.

2015 ◽  
Vol 28 (2) ◽  
pp. 155-175
Author(s):  
Witold Drezner

The correlation between the net assimilation rate and the degree of plant tillering are investigated for several varieties of simple winter wheat. The net assimilation rate (E, NAR, An) of the studied varieties for different degrees of tillering, individual shoots and individual plants is described according to the units mg/cm<sup>2</sup> • 24 h. Index of efficiency of assimilation surface (F, LAR, I<sub>S</sub>) is determined in units cm<sup>2</sup>/mg. The tillering ability of vegetative shoots in plaints is a very important factor which increases the total assimilate stirfaice value and the assimilation effectivity of the plant's biomass.


2020 ◽  
Vol 52 (5) ◽  
pp. 371-387
Author(s):  
O.O. Stasik ◽  

Effects of soil drought at flowering stage on the functional state of photosynthetic apparatus and chloroplast enzymatic antioxidant defense systems in flag leaf during reproductive period, and the productivity of winter wheat plants of high-protein Natalka variety and drought-tolerant Podolyanka variety were studied in pot experiment. Until flowering and for the control plants during the entire vegetation, the soil moisture content was maintained at a level of 60—70 % of field capacity (FC). Drought treatment (soil moisture 30 % FC) was applied for 7 days covering flowering—early kernel watery ripe period (BBCH 61—71). After that, watering of plants was resumed to a control level which was maintained until the end of the growing season. The estimation of the chlorophyll and Rubisco content, the chloroplast antioxidant enzymes activity, and the net CO2 assimilation and transpiration rates was carried out on flag leaves. The measurements were taken on the third day of watering cessation (the first day the soil moisture reached 30 % FC, BBCH 61), at the end of the drought period (seventh day at 30 % FC, BBCH 71), and after watering resumed at the medium milk (BBCH 75) and late milk (BBCH 77) stages. The components of plant grain productivity were determined by weighing air-dry material at grain full ripeness. It was revealed, that drought stress during flowering inhibited CO2 assimilation and accelerated induction of senescence processes in wheat plants associated with degradation of photosynthetic apparatus and manifested in quicker ontogenetic drop in chlorophyll and Rubisco contents and loss of leaf photosynthetic activity. This exacerbated the drought impact on the plant organism so that after optimal watering return, the physiological and biochemical parameters were not restored to the values of control plants that were all time under optimal moisture supply. Stress-induced premature senescence reduced the supply of plants with assimilates and ultimately led to a decrease in their grain productivity. Impact of drought on flag leaf photosynthetic activity and especially on senescence induction were much more pronounced in the high-protein wheat variety Natalka with a genetically programmed earlier start of the nitrogen-containing compounds remobilization from leaves than in Podolyanka variety. The drought-tolerant variety Podolyanka keep ability to maintain much higher CO2 assimilation activity during drought period and to preserve photosynthetic apparatus from early induction of senescence due to likely more efficient chloroplast antioxidant defense systems, thereby gaining a better assimilates supply for yield formation.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
方燕 FANG Yan ◽  
闵东红 MIN Donghong ◽  
高欣 GAO Xin ◽  
王中华 WANG Zhonghua ◽  
王军 WANG Jun ◽  
...  

2018 ◽  
Vol 6 (0) ◽  
pp. 43-51
Author(s):  
T. V. Yurchenko ◽  
T. V. Chugunkova ◽  
N. I. Prokopik

2020 ◽  
Vol 10 (4) ◽  
pp. 102-108
Author(s):  
M. Nazarenko ◽  
S. Mykolenko ◽  
P. Okhmat

We have been studying the grain productivity and quality of 22 new winter wheat varieties during three years under North Ukrainian Steppe conditions. These 22 winter wheat varieties and control (national standard by grain productivity variety Podolyanka) were investigated regarding their interactions with environmental conditions by agronomic-value traits like as general grain productivity, components of one, protein and gluten content, developing relations between once (correlation relations), which determining wheat quality and yield in a complex. Two high-adaptive varieties Divo and Matrix, which provides us higher than standard grain yield in complex with higher or proper protein and gluten content were developed. Two factors permanently influenced on grain productivity (conditions of the year and genotype), while only one (genotype) determined the protein content of grains. We used the weight of thousand grains as an integrative parameter of the yield structure for all productive varieties, with no regards to yield formation.


Author(s):  
Rahmatzhon Kodirov

This article sets out ideas about the need for a particular agrotechnical cultivation of early ripening winter wheat varieties «Durdona» and «Asr», taking into account the soil and climatic conditions, individual feeding norms, irrigation regime. Also, emphasis is placed on soil moisture as the main factor affecting the yield of winter wheat under irrigated agriculture.


2019 ◽  
Vol 24 ◽  
pp. 265-270
Author(s):  
V. V. Morgun ◽  
G. A. Priadkina ◽  
O. O. Stasik ◽  
O. V. Zborіvskaіa

Aim. The search of factors influencing grain productivity, based on the comparison of the mass of dry matter in the aboveground parts of modern winter wheat varieties at the early stages of ontogenesis. Methods. Morphometric determination of biomass of the above-ground plant parts. Results. The varieties and lines of winter wheat with higher yields exceeded the less productive ones by the number of shoots per 1 m2 of soil on 8–12 % and by the dry matter weight of the above-ground plant parts on 23–34 % at the early stages of spring vegetation. According to two-year experiments, it was established a linear positive correlation (r = 0.85–0.86) of the dry matter weight of the above-ground plant parts per 1 m2 of soil during the period of stem elongation (BBCH 31-49) with the yield. Conclusions. The close relationship between yield and dry matter weight of the above-ground plant parts at the early stages of spring vegetation makes it possible to rank winter wheat varieties by potential yield. Keywords: Triticum aestivum L., grain productivity, biomass, early stages of ontogenesis.


Sign in / Sign up

Export Citation Format

Share Document